Header logo is


2018


no image
Reducing 3D Vibrations to 1D in Real Time

Park, G., Kuchenbecker, K. J.

Hands-on demonstration (4 pages) presented at AsiaHaptics, Incheon, South Korea, November 2018 (misc)

Abstract
For simple and realistic vibrotactile feedback, 3D accelerations from real contact interactions are usually rendered using a single-axis vibration actuator; this dimensional reduction can be performed in many ways. This demonstration implements a real-time conversion system that simultaneously measures 3D accelerations and renders corresponding 1D vibrations using a two-pen interface. In the demonstration, a user freely interacts with various objects using an In-Pen that contains a 3-axis accelerometer. The captured accelerations are converted to a single-axis signal, and an Out-Pen renders the reduced signal for the user to feel. We prepared seven conversion methods from the simple use of a single-axis signal to applying principal component analysis (PCA) so that users can compare the performance of each conversion method in this demonstration.

hi

Project Page [BibTex]

2018


Project Page [BibTex]


A Large-Scale Fabric-Based Tactile Sensor Using Electrical Resistance Tomography
A Large-Scale Fabric-Based Tactile Sensor Using Electrical Resistance Tomography

Lee, H., Park, K., Kim, J., Kuchenbecker, K. J.

Hands-on demonstration (3 pages) presented at AsiaHaptics, Incheon, South Korea, November 2018 (misc)

Abstract
Large-scale tactile sensing is important for household robots and human-robot interaction because contacts can occur all over a robot’s body surface. This paper presents a new fabric-based tactile sensor that is straightforward to manufacture and can cover a large area. The tactile sensor is made of conductive and non-conductive fabric layers, and the electrodes are stitched with conductive thread, so the resulting device is flexible and stretchable. The sensor utilizes internal array electrodes and a reconstruction method called electrical resistance tomography (ERT) to achieve a high spatial resolution with a small number of electrodes. The developed sensor shows that only 16 electrodes can accurately estimate single and multiple contacts over a square that measures 20 cm by 20 cm.

hi

Project Page [BibTex]

Project Page [BibTex]


Statistical Modelling of Fingertip Deformations and Contact Forces during Tactile Interaction
Statistical Modelling of Fingertip Deformations and Contact Forces during Tactile Interaction

Gueorguiev, D., Tzionas, D., Pacchierotti, C., Black, M. J., Kuchenbecker, K. J.

Extended abstract presented at the Hand, Brain and Technology conference (HBT), Ascona, Switzerland, August 2018 (misc)

Abstract
Little is known about the shape and properties of the human finger during haptic interaction, even though these are essential parameters for controlling wearable finger devices and deliver realistic tactile feedback. This study explores a framework for four-dimensional scanning (3D over time) and modelling of finger-surface interactions, aiming to capture the motion and deformations of the entire finger with high resolution while simultaneously recording the interfacial forces at the contact. Preliminary results show that when the fingertip is actively pressing a rigid surface, it undergoes lateral expansion and proximal/distal bending, deformations that cannot be captured by imaging of the contact area alone. Therefore, we are currently capturing a dataset that will enable us to create a statistical model of the finger’s deformations and predict the contact forces induced by tactile interaction with objects. This technique could improve current methods for tactile rendering in wearable haptic devices, which rely on general physical modelling of the skin’s compliance, by developing an accurate model of the variations in finger properties across the human population. The availability of such a model will also enable a more realistic simulation of virtual finger behaviour in virtual reality (VR) environments, as well as the ability to accurately model a specific user’s finger from lower resolution data. It may also be relevant for inferring the physical properties of the underlying tissue from observing the surface mesh deformations, as previously shown for body tissues.

hi

Project Page [BibTex]

Project Page [BibTex]


A machine from machines
A machine from machines

Fischer, P.

Nature Physics, 14, pages: 1072–1073, July 2018 (misc)

Abstract
Building spinning microrotors that self-assemble and synchronize to form a gear sounds like an impossible feat. However, it has now been achieved using only a single type of building block -- a colloid that self-propels.

pf

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Reducing 3D Vibrations to 1D in Real Time

Park, G., Kuchenbecker, K. J.

Hands-on demonstration presented at EuroHaptics, Pisa, Italy, June 2018 (misc)

Abstract
In this demonstration, you will hold two pen-shaped modules: an in-pen and an out-pen. The in-pen is instrumented with a high-bandwidth three-axis accelerometer, and the out-pen contains a one-axis voice coil actuator. Use the in-pen to interact with different surfaces; the measured 3D accelerations are continually converted into 1D vibrations and rendered with the out-pen for you to feel. You can test conversion methods that range from simply selecting a single axis to applying a discrete Fourier transform or principal component analysis for realistic and brisk real-time conversion.

hi

Project Page [BibTex]

Project Page [BibTex]


no image
Haptipedia: Exploring Haptic Device Design Through Interactive Visualizations

Seifi, H., Fazlollahi, F., Park, G., Kuchenbecker, K. J., MacLean, K. E.

Hands-on demonstration presented at EuroHaptics, Pisa, Italy, June 2018 (misc)

Abstract
How many haptic devices have been proposed in the last 30 years? How can we leverage this rich source of design knowledge to inspire future innovations? Our goal is to make historical haptic invention accessible through interactive visualization of a comprehensive library – a Haptipedia – of devices that have been annotated with designer-relevant metadata. In this demonstration, participants can explore Haptipedia’s growing library of grounded force feedback devices through several prototype visualizations, interact with 3D simulations of the device mechanisms and movements, and tell us about the attributes and devices that could make Haptipedia a useful resource for the haptic design community.

hi

Project Page [BibTex]

Project Page [BibTex]


no image
Delivering 6-DOF Fingertip Tactile Cues

Young, E., Kuchenbecker, K. J.

Work-in-progress paper (5 pages) presented at EuroHaptics, Pisa, Italy, June 2018 (misc)

hi

Project Page [BibTex]

Project Page [BibTex]


Designing a Haptic Empathetic Robot Animal for Children with Autism
Designing a Haptic Empathetic Robot Animal for Children with Autism

Burns, R., Kuchenbecker, K. J.

Workshop paper (4 pages) presented at the Robotics: Science and Systems Workshop on Robot-Mediated Autism Intervention: Hardware, Software and Curriculum, Pittsburgh, USA, June 2018 (misc)

Abstract
Children with autism often endure sensory overload, may be nonverbal, and have difficulty understanding and relaying emotions. These experiences result in heightened stress during social interaction. Animal-assisted intervention has been found to improve the behavior of children with autism during social interaction, but live animal companions are not always feasible. We are thus in the process of designing a robotic animal to mimic some successful characteristics of animal-assisted intervention while trying to improve on others. The over-arching hypothesis of this research is that an appropriately designed robot animal can reduce stress in children with autism and empower them to engage in social interaction.

hi

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


no image
Soft Multi-Axis Boundary-Electrode Tactile Sensors for Whole-Body Robotic Skin

Lee, H., Kim, J., Kuchenbecker, K. J.

Workshop paper (2 pages) presented at the RSS Pioneers Workshop, Pittsburgh, USA, June 2018 (misc)

hi

Project Page [BibTex]

Project Page [BibTex]


Method and Apparatus for Estimating Body Shape
Method and Apparatus for Estimating Body Shape

Black, M. J., Balan, A., Weiss, A., Sigal, L., Loper, M., St Clair, T.

June 2018, U.S.~Patent 10,002,460 (misc)

Abstract
A system and method of estimating the body shape of an individual from input data such as images or range maps. The body may appear in one or more poses captured at different times and a consistent body shape is computed for all poses. The body may appear in minimal tight-fitting clothing or in normal clothing wherein the described method produces an estimate of the body shape under the clothing. Clothed or bare regions of the body are detected via image classification and the fitting method is adapted to treat each region differently. Body shapes are represented parametrically and are matched to other bodies based on shape similarity and other features. Standard measurements are extracted using parametric or non-parametric functions of body shape. The system components support many applications in body scanning, advertising, social networking, collaborative filtering and Internet clothing shopping.

ps

Google Patents Project Page [BibTex]

Google Patents Project Page [BibTex]


no image
Poster Abstract: Toward Fast Closed-loop Control over Multi-hop Low-power Wireless Networks

Mager, F., Baumann, D., Trimpe, S., Zimmerling, M.

Proceedings of the 17th ACM/IEEE Conference on Information Processing in Sensor Networks (IPSN), pages: 158-159, Porto, Portugal, April 2018 (poster)

ics

DOI Project Page [BibTex]

DOI Project Page [BibTex]


no image
Arm-Worn Tactile Displays

Kuchenbecker, K. J.

Cross-Cutting Challenge Interactive Discussion presented at the IEEE Haptics Symposium, San Francisco, USA, March 2018 (misc)

Abstract
Fingertips and hands captivate the attention of most haptic interface designers, but humans can feel touch stimuli across the entire body surface. Trying to create devices that both can be worn and can deliver good haptic sensations raises challenges that rarely arise in other contexts. Most notably, tactile cues such as vibration, tapping, and squeezing are far simpler to implement in wearable systems than kinesthetic haptic feedback. This interactive discussion will present a variety of relevant projects to which I have contributed, attempting to pull out common themes and ideas for the future.

hi

[BibTex]

[BibTex]


Haptipedia: An Expert-Sourced Interactive Device Visualization for Haptic Designers
Haptipedia: An Expert-Sourced Interactive Device Visualization for Haptic Designers

Seifi, H., MacLean, K. E., Kuchenbecker, K. J., Park, G.

Work-in-progress paper (3 pages) presented at the IEEE Haptics Symposium, San Francisco, USA, March 2018 (misc)

Abstract
Much of three decades of haptic device invention is effectively lost to today’s designers: dispersion across time, region, and discipline imposes an incalculable drag on innovation in this field. Our goal is to make historical haptic invention accessible through interactive navigation of a comprehensive library – a Haptipedia – of devices that have been annotated with designer-relevant metadata. To build this open resource, we will systematically mine the literature and engage the haptics community for expert annotation. In a multi-year broad-based initiative, we will empirically derive salient attributes of haptic devices, design an interactive visualization tool where device creators and repurposers can efficiently explore and search Haptipedia, and establish methods and tools to manually and algorithmically collect data from the haptics literature and our community of experts. This paper outlines progress in compiling an initial corpus of grounded force-feedback devices and their attributes, and it presents a concept sketch of the interface we envision.

hi

Project Page [BibTex]

Project Page [BibTex]


no image
Exercising with Baxter: Design and Evaluation of Assistive Social-Physical Human-Robot Interaction

Fitter, N. T., Mohan, M., Kuchenbecker, K. J., Johnson, M. J.

Workshop paper (6 pages) presented at the HRI Workshop on Personal Robots for Exercising and Coaching, Chicago, USA, March 2018 (misc)

Abstract
The worldwide population of older adults is steadily increasing and will soon exceed the capacity of assisted living facilities. Accordingly, we aim to understand whether appropriately designed robots could help older adults stay active and engaged while living at home. We developed eight human-robot exercise games for the Baxter Research Robot with the guidance of experts in game design, therapy, and rehabilitation. After extensive iteration, these games were employed in a user study that tested their viability with 20 younger and 20 older adult users. All participants were willing to enter Baxter’s workspace and physically interact with the robot. User trust and confidence in Baxter increased significantly between pre- and post-experiment assessments, and one individual from the target user population supplied us with abundant positive feedback about her experience. The preliminary results presented in this paper indicate potential for the use of two-armed human-scale robots for social-physical exercise interaction.

hi

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


no image
Representation of sensory uncertainty in macaque visual cortex

Goris, R., Henaff, O., Meding, K.

Computational and Systems Neuroscience (COSYNE) 2018, March 2018 (poster)

ei

[BibTex]

[BibTex]


Emotionally Supporting Humans Through Robot Hugs
Emotionally Supporting Humans Through Robot Hugs

Block, A. E., Kuchenbecker, K. J.

Workshop paper (2 pages) presented at the HRI Pioneers Workshop, Chicago, USA, March 2018 (misc)

Abstract
Hugs are one of the first forms of contact and affection humans experience. Due to their prevalence and health benefits, we want to enable robots to safely hug humans. This research strives to create and study a high fidelity robotic system that provides emotional support to people through hugs. This paper outlines our previous work evaluating human responses to a prototype’s physical and behavioral characteristics, and then it lays out our ongoing and future work.

hi

link (url) DOI Project Page [BibTex]

link (url) DOI Project Page [BibTex]


Towards a Statistical Model of Fingertip Contact Deformations from 4{D} Data
Towards a Statistical Model of Fingertip Contact Deformations from 4D Data

Gueorguiev, D., Tzionas, D., Pacchierotti, C., Black, M. J., Kuchenbecker, K. J.

Work-in-progress paper (3 pages) presented at the IEEE Haptics Symposium, San Francisco, USA, March 2018 (misc)

Abstract
Little is known about the shape and properties of the human finger during haptic interaction even though this knowledge is essential to control wearable finger devices and deliver realistic tactile feedback. This study explores a framework for four-dimensional scanning and modeling of finger-surface interactions, aiming to capture the motion and deformations of the entire finger with high resolution. The results show that when the fingertip is actively pressing a rigid surface, it undergoes lateral expansion of about 0.2 cm and proximal/distal bending of about 30◦, deformations that cannot be captured by imaging of the contact area alone. This project constitutes a first step towards an accurate statistical model of the finger’s behavior during haptic interaction.

hi

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


no image
Can Humans Infer Haptic Surface Properties from Images?

Burka, A., Kuchenbecker, K. J.

Work-in-progress paper (3 pages) presented at the IEEE Haptics Symposium, San Francisco, USA, March 2018 (misc)

Abstract
Human children typically experience their surroundings both visually and haptically, providing ample opportunities to learn rich cross-sensory associations. To thrive in human environments and interact with the real world, robots also need to build models of these cross-sensory associations; current advances in machine learning should make it possible to infer models from large amounts of data. We previously built a visuo-haptic sensing device, the Proton Pack, and are using it to collect a large database of matched multimodal data from tool-surface interactions. As a benchmark to compare with machine learning performance, we conducted a human subject study (n = 84) on estimating haptic surface properties (here: hardness, roughness, friction, and warmness) from images. Using a 100-surface subset of our database, we showed images to study participants and collected 5635 ratings of the four haptic properties, which we compared with ratings made by the Proton Pack operator and with physical data recorded using motion, force, and vibration sensors. Preliminary results indicate weak correlation between participant and operator ratings, but potential for matching up certain human ratings (particularly hardness and roughness) with features from the literature.

hi

Project Page [BibTex]

Project Page [BibTex]


Co-Registration -- Simultaneous Alignment and Modeling of Articulated {3D} Shapes
Co-Registration – Simultaneous Alignment and Modeling of Articulated 3D Shapes

Black, M., Hirshberg, D., Loper, M., Rachlin, E., Weiss, A.

Febuary 2018, U.S.~Patent 9,898,848 (misc)

Abstract
Present application refers to a method, a model generation unit and a computer program (product) for generating trained models (M) of moving persons, based on physically measured person scan data (S). The approach is based on a common template (T) for the respective person and on the measured person scan data (S) in different shapes and different poses. Scan data are measured with a 3D laser scanner. A generic personal model is used for co-registering a set of person scan data (S) aligning the template (T) to the set of person scans (S) while simultaneously training the generic personal model to become a trained person model (M) by constraining the generic person model to be scan-specific, person-specific and pose-specific and providing the trained model (M), based on the co registering of the measured object scan data (S).

ps

text [BibTex]


no image
Die kybernetische Revolution

Schölkopf, B.

15-Mar-2018, Süddeutsche Zeitung, 2018 (misc)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
Detailed Dense Inference with Convolutional Neural Networks via Discrete Wavelet Transform

Ma, L., Stueckler, J., Wu, T., Cremers, D.

arxiv, 2018, arXiv:1808.01834 (techreport)

ev

[BibTex]

[BibTex]


no image
Generalized phase locking analysis of electrophysiology data

Safavi, S., Panagiotaropoulos, T., Kapoor, V., Logothetis, N. K., Besserve, M.

7th AREADNE Conference on Research in Encoding and Decoding of Neural Ensembles, 2018 (poster)

ei

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


no image
Photorealistic Video Super Resolution

Pérez-Pellitero, E., Sajjadi, M. S. M., Hirsch, M., Schölkopf, B.

Workshop and Challenge on Perceptual Image Restoration and Manipulation (PIRM) at the 15th European Conference on Computer Vision (ECCV), 2018 (poster)

ei

[BibTex]

[BibTex]


no image
Retinal image quality of the human eye across the visual field

Meding, K., Hirsch, M., Wichmann, F. A.

14th Biannual Conference of the German Society for Cognitive Science (KOGWIS 2018), 2018 (poster)

ei

[BibTex]

[BibTex]


no image
Emission and propagation of multi-dimensional spin waves in anisotropic spin textures

Sluka, V., Schneider, T., Gallardo, R. A., Kakay, A., Weigand, M., Warnatz, T., Mattheis, R., Roldan-Molina, A., Landeros, P., Tiberkevich, V., Slavin, A., Schütz, G., Erbe, A., Deac, A., Lindner, J., Raabe, J., Fassbender, J., Wintz, S.

2018 (misc)

mms

link (url) [BibTex]

link (url) [BibTex]


no image
Thermal skyrmion diffusion applied in probabilistic computing

Zázvorka, J., Jakobs, F., Heinze, D., Keil, N., Kromin, S., Jaiswal, S., Litzius, K., Jakob, G., Virnau, P., Pinna, D., Everschor-Sitte, K., Donges, A., Nowak, U., Kläui, M.

2018 (misc)

mms

link (url) [BibTex]

link (url) [BibTex]

2010


no image
Computationally efficient algorithms for statistical image processing: Implementation in R

Langovoy, M., Wittich, O.

(2010-053), EURANDOM, Technische Universiteit Eindhoven, December 2010 (techreport)

Abstract
In the series of our earlier papers on the subject, we proposed a novel statistical hy- pothesis testing method for detection of objects in noisy images. The method uses results from percolation theory and random graph theory. We developed algorithms that allowed to detect objects of unknown shapes in the presence of nonparametric noise of unknown level and of un- known distribution. No boundary shape constraints were imposed on the objects, only a weak bulk condition for the object's interior was required. Our algorithms have linear complexity and exponential accuracy. In the present paper, we describe an implementation of our nonparametric hypothesis testing method. We provide a program that can be used for statistical experiments in image processing. This program is written in the statistical programming language R.

ei

PDF [BibTex]

2010


PDF [BibTex]


no image
Similarities in resting state and feature-driven activity: Non-parametric evaluation of human fMRI

Shelton, J., Blaschko, M., Gretton, A., Müller, J., Fischer, E., Bartels, A.

NIPS Workshop on Learning and Planning from Batch Time Series Data, December 2010 (poster)

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Fast Convergent Algorithms for Expectation Propagation Approximate Bayesian Inference

Seeger, M., Nickisch, H.

Max Planck Institute for Biological Cybernetics, December 2010 (techreport)

Abstract
We propose a novel algorithm to solve the expectation propagation relaxation of Bayesian inference for continuous-variable graphical models. In contrast to most previous algorithms, our method is provably convergent. By marrying convergent EP ideas from (Opper&Winther 05) with covariance decoupling techniques (Wipf&Nagarajan 08, Nickisch&Seeger 09), it runs at least an order of magnitude faster than the most commonly used EP solver.

ei

Web [BibTex]

Web [BibTex]


no image
Augmentation of fMRI Data Analysis using Resting State Activity and Semi-supervised Canonical Correlation Analysis

Shelton, JA., Blaschko, MB., Bartels, A.

NIPS Women in Machine Learning Workshop (WiML), December 2010 (poster)

Abstract
Resting state activity is brain activation that arises in the absence of any task, and is usually measured in awake subjects during prolonged fMRI scanning sessions where the only instruction given is to close the eyes and do nothing. It has been recognized in recent years that resting state activity is implicated in a wide variety of brain function. While certain networks of brain areas have different levels of activation at rest and during a task, there is nevertheless significant similarity between activations in the two cases. This suggests that recordings of resting state activity can be used as a source of unlabeled data to augment kernel canonical correlation analysis (KCCA) in a semisupervised setting. We evaluate this setting empirically yielding three main results: (i) KCCA tends to be improved by the use of Laplacian regularization even when no additional unlabeled data are available, (ii) resting state data seem to have a similar marginal distribution to that recorded during the execution of a visual processing task implying largely similar types of activation, and (iii) this source of information can be broadly exploited to improve the robustness of empirical inference in fMRI studies, an inherently data poor domain.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
High frequency phase-spike synchronization of extracellular signals modulates causal interactions in monkey primary visual cortex

Besserve, M., Murayama, Y., Schölkopf, B., Logothetis, N., Panzeri, S.

40(616.2), 40th Annual Meeting of the Society for Neuroscience (Neuroscience), November 2010 (poster)

Abstract
Functional correlates of Rhythms in the gamma band (30-100Hz) are observed in the mammalian brain with a large variety of functional correlates. Nevertheless, their functional role is still debated. One way to disentangle this issue is to go beyond usual correlation analysis and apply causality measures that quantify the directed interactions between the gamma rhythms and other aspects of neural activity. These measures can be further compared with other aspects of neurophysicological signals to find markers of neural interactions. In a recent study, we analyzed extracellular recordings in the primary visual cortex of 4 anesthetized macaques during the presentation of movie stimuli using a causality measure named Transfer Entropy. We found causal interactions between high frequency gamma rhythms (60-100Hz) recorded in different electrodes, involving in particular their phase, and between the gamma phase and spiking activity quantified by the instantaneous envelope of the MUA band (1-3kHz). Here, we further investigate in the same dataset the meaning of these phase-MUA and phase-phase causal interactions by studying the distribution of phases at multiple recording sites at lags around the occurrence of spiking events. First, we found a sharpening of the gamma phase distribution in one electrode when spikes are occurring in other recording site. This phenomena appeared as a form of phase-spike synchronization and was quantified by an information theoretic measure. We found this measure correlates significantly with phase-MUA causal interactions. Additionally, we quantified in a similar way the interplay between spiking and the phase difference between two recording sites (reflecting the well-know concept of phase synchronization). We found that, depending on the couple of recording site, spiking can correlate either with a phase synchronization or with a desynchronization with respect to the baseline. This effect correlates very well with the phase-phase causality measure. These results provide evidence for high frequency phase-spike synchronization to reflect communication between distant neural populations in V1. Conversely, both phase synchronization or desynchronization may favor neural communication between recording sites. This new result, which contrasts with current hypothesis on the role of phase synchronization, could be interpreted as the presence of inhibitory interactions that are suppressed by desynchronization. Finally, our findings give new insights into the role of gamma rhythms in regulating local computation in the visual cortex.

ei

Web [BibTex]

Web [BibTex]


no image
Attenuation Correction for Whole Body PET/MR: Quantitative Evaluation and Lung Attenuation Estimation with Consistency Information

Bezrukov, I., Hofmann, M., Aschoff, P., Beyer, T., Mantlik, F., Pichler, B., Schölkopf, B.

2010(M13-122), 2010 Nuclear Science Symposium and Medical Imaging Conference (NSS-MIC), November 2010 (poster)

ei

[BibTex]

[BibTex]


no image
PET/MRI: Observation of Non-Isotropic Positron Distribution in High Magnetic Fields and Its Diagnostic Impact

Kolb, A., Hofmann, M., Sauter, A., Liu, C., Schölkopf, B., Pichler, B.

2010 Nuclear Science Symposium and Medical Imaging Conference, 2010(M18-119):1, November 2010 (poster)

ei

Web [BibTex]

Web [BibTex]


no image
Probabilistic Assignment of Chemical Shift Data for Semi-Automatic Amino Acid Recognition

Hooge, J.

11(10):30, 11th Conference of Junior Neuroscientists of T{\"u}bingen (NeNa), October 2010 (poster)

Abstract
manner. First the backbone resonances are assigned. This is usually achieved from sequential information provided by three chemical shifts: CA, CB and C’. Once the sequence is solved, the second assignment step takes place. For this purpose, the CA-CB and HA chemical shifts are used as a start point for assignment of the side chain resonances, thus connecting the backbone resonances to their respective side chains. This strategy is unfortunately limited by the size of the protein due to increasing signal overlap and missing signals. Therefore, amino acid recognition is in many cases not possible as the CA-CB chemical shift pattern is not sufficient to discriminate between the 20 amino acids. As a result, the first step of the strategy described above remains tedious and time consuming. The combination of modern NMR techniques with new spectrometers now provide information that was not always accessible in the past, due to sensitivity problems. These experiments can be applied efficiently to measure a protein size up to 45 kDa and furthermore provide a unique combination of sequential carbon spin system information. The assignment process can thus benefit from a maximum knowledge input, containing âallâ backbone and side chain chemical shifts as well as an immediate amino acid recognition from the side chain spin system. We propose to extend the software PASTA (Protein ASsignment by Threshold Accepting) to achieve a general sequential assignment of backbone and side-chain resonances in a semi- to fullautomatic per-residue approach. PASTA will offer the possibility to achieve the sequential assignment using any kind of chemical shifts (carbons and/or protons) that can provide sequential information combined with an amino acid recognition feature based on carbon spin system analysis.

ei

PDF [BibTex]

PDF [BibTex]


no image
Generalizing Demonstrated Actions in Manipulation Tasks

Kroemer, O., Detry, R., Piater, J., Peters, J.

IROS 2010 Workshop on Grasp Planning and Task Learning by Imitation, 2010, pages: 1, October 2010 (poster)

Abstract
Programming-by-demonstration promises to significantly reduce the burden of coding robots to perform new tasks. However, service robots will be presented with a variety of different situations that were not specifically demonstrated to it. In such cases, the robot must autonomously generalize its learned motions to these new situations. We propose a system that can generalize movements to new target locations and even new objects. The former is achieved by using a task-specific coordinate system together with dynamical systems motor primitives. Generalizing actions to new objects is a more complex problem, which we solve by treating it as a continuum-armed bandits problem. Using the bandits framework, we can efficiently optimize the learned action for a specific object. The proposed method was implemented on a real robot and succesfully adapted the grasping action to three different objects. Although we focus on grasping as an example of a task, the proposed methods are much more widely applicable to robot manipulation tasks.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Inhomogeneous Positron Range Effects in High Magnetic Fields might Cause Severe Artefacts in PET/MRI

Kolb, A., Hofmann, M., Sauter, A., Liu, C., Eriksson, L., Pichler, B.

(0305B), 2010 World Molecular Imaging Congress (WMIC), September 2010 (poster)

Abstract
The combination of PET and MRI is an emerging field of current research. It is known that the positron range is shortened in high magnetic fields (MF), leading to an improved resolution in PET images. Interestingly, only the fraction of positron range (PR) orthogonal to the MF is reduced and the fraction along the MF is not affected and yields to a non-isotropic count distribution. We measured the PR effect with PET isotopes like F-18, Cu-64, C-11, N-13 and Ga-68. A piece of paper (1 cm2) was soaked with each isotope and placed in the cFOV of a clinical 3T BrainPET/MR scanner. A polyethylene board (PE) was placed as a positron (β+) stopper with an axial distance of 3 cm from the soaked paper. The area under the peaks of one pixel wide profiles along the z-axis in coronal images was compared. Based on these measurements we confirmed our data in organic tissue. A larynx/trachea and lung of a butchered swine were injected with a mixture of NiSO4 for T1 MRI signals and Ga-68, simulating tumor lesions in the respiratory tract. The trachea/larynx were aligned in 35° to the MF lines and a small mass lesion was inserted to imitate a primary tracheal tumor whereas the larynx was injected submucosally in the lower medial part of the epiglottis. Reconstructed PET data show that the annihilated ratio of β+ at the origin position and in the PE depends on the isotope energy and the direction of the MF. The annihilation ratios of the source and PE are 52.4/47.6 (F-18), 57.5/42.5 (Cu-64), 43.7/56.7 (C-11), 31.1/68.9 (N-13) and 14.9/85.1 (Ga-68). In the swine larynx measurement, an artefact with approximately 39% of the lesion activity formed along MF lines 3cm away from the original injected position (fig.1). The data of the trachea showed two shine artefacts with a symmetric alignment along the MF lines. About 58% of the positrons annihilated at the lesion and 21% formed each artefact. The PR effects areminor in tissue of higher or equal density to water (0.096 cm-1). However, the effect is severe in low density tissue or air and might lead to misinterpretation of clinical data.

ei

Web [BibTex]

Web [BibTex]


no image
A PAC-Bayesian Analysis of Graph Clustering and Pairwise Clustering

Seldin, Y.

Max Planck Institute for Biological Cybernetics, Tübingen, Germany, September 2010 (techreport)

Abstract
We formulate weighted graph clustering as a prediction problem: given a subset of edge weights we analyze the ability of graph clustering to predict the remaining edge weights. This formulation enables practical and theoretical comparison of different approaches to graph clustering as well as comparison of graph clustering with other possible ways to model the graph. We adapt the PAC-Bayesian analysis of co-clustering (Seldin and Tishby, 2008; Seldin, 2009) to derive a PAC-Bayesian generalization bound for graph clustering. The bound shows that graph clustering should optimize a trade-off between empirical data fit and the mutual information that clusters preserve on the graph nodes. A similar trade-off derived from information-theoretic considerations was already shown to produce state-of-the-art results in practice (Slonim et al., 2005; Yom-Tov and Slonim, 2009). This paper supports the empirical evidence by providing a better theoretical foundation, suggesting formal generalization guarantees, and offering a more accurate way to deal with finite sample issues. We derive a bound minimization algorithm and show that it provides good results in real-life problems and that the derived PAC-Bayesian bound is reasonably tight.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Sparse nonnegative matrix approximation: new formulations and algorithms

Tandon, R., Sra, S.

(193), Max Planck Institute for Biological Cybernetics, Tübingen, Germany, September 2010 (techreport)

Abstract
We introduce several new formulations for sparse nonnegative matrix approximation. Subsequently, we solve these formulations by developing generic algorithms. Further, to help selecting a particular sparse formulation, we briefly discuss the interpretation of each formulation. Finally, preliminary experiments are presented to illustrate the behavior of our formulations and algorithms.

ei

PDF [BibTex]

PDF [BibTex]


no image
Robust nonparametric detection of objects in noisy images

Langovoy, M., Wittich, O.

(2010-049), EURANDOM, Technische Universiteit Eindhoven, September 2010 (techreport)

Abstract
We propose a novel statistical hypothesis testing method for detection of objects in noisy images. The method uses results from percolation theory and random graph theory. We present an algorithm that allows to detect objects of unknown shapes in the presence of nonparametric noise of unknown level and of unknown distribution. No boundary shape constraints are imposed on the object, only a weak bulk condition for the object's interior is required. The algorithm has linear complexity and exponential accuracy and is appropriate for real-time systems. In this paper, we develop further the mathematical formalism of our method and explore im- portant connections to the mathematical theory of percolation and statistical physics. We prove results on consistency and algorithmic complexity of our testing procedure. In addition, we address not only an asymptotic behavior of the method, but also a nite sample performance of our test.

ei

PDF [BibTex]

PDF [BibTex]


no image
Large Scale Variational Inference and Experimental Design for Sparse Generalized Linear Models

Seeger, M., Nickisch, H.

Max Planck Institute for Biological Cybernetics, August 2010 (techreport)

Abstract
Many problems of low-level computer vision and image processing, such as denoising, deconvolution, tomographic reconstruction or super-resolution, can be addressed by maximizing the posterior distribution of a sparse linear model (SLM). We show how higher-order Bayesian decision-making problems, such as optimizing image acquisition in magnetic resonance scanners, can be addressed by querying the SLM posterior covariance, unrelated to the density's mode. We propose a scalable algorithmic framework, with which SLM posteriors over full, high-resolution images can be approximated for the first time, solving a variational optimization problem which is convex iff posterior mode finding is convex. These methods successfully drive the optimization of sampling trajectories for real-world magnetic resonance imaging through Bayesian experimental design, which has not been attempted before. Our methodology provides new insight into similarities and differences between sparse reconstruction and approximate Bayesian inference, and has important implications for compressive sensing of real-world images.

ei

Web [BibTex]


no image
Cooperative Cuts for Image Segmentation

Jegelka, S., Bilmes, J.

(UWEETR-1020-0003), University of Washington, Washington DC, USA, August 2010 (techreport)

Abstract
We propose a novel framework for graph-based cooperative regularization that uses submodular costs on graph edges. We introduce an efficient iterative algorithm to solve the resulting hard discrete optimization problem, and show that it has a guaranteed approximation factor. The edge-submodular formulation is amenable to the same extensions as standard graph cut approaches, and applicable to a range of problems. We apply this method to the image segmentation problem. Specifically, Here, we apply it to introduce a discount for homogeneous boundaries in binary image segmentation on very difficult images, precisely, long thin objects and color and grayscale images with a shading gradient. The experiments show that significant portions of previously truncated objects are now preserved.

ei

Web [BibTex]

Web [BibTex]


no image
Fast algorithms for total-variationbased optimization

Barbero, A., Sra, S.

(194), Max Planck Institute for Biological Cybernetics, Tübingen, Germany, August 2010 (techreport)

Abstract
We derive a number of methods to solve efficiently simple optimization problems subject to a totalvariation (TV) regularization, under different norms of the TV operator and both for the case of 1-dimensional and 2-dimensional data. In spite of the non-smooth, non-separable nature of the TV terms considered, we show that a dual formulation with strong structure can be derived. Taking advantage of this structure we develop adaptions of existing algorithms from the optimization literature, resulting in efficient methods for the problem at hand. Experimental results show that for 1-dimensional data the proposed methods achieve convergence within good accuracy levels in practically linear time, both for L1 and L2 norms. For the more challenging 2-dimensional case a performance of order O(N2 log2 N) for N x N inputs is achieved when using the L2 norm. A final section suggests possible extensions and lines of further work.

ei

PDF [BibTex]

PDF [BibTex]


no image
Reinforcement Learning by Relative Entropy Policy Search

Peters, J., Mülling, K., Altun, Y.

30th International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering (MaxEnt 2010), 30, pages: 69, July 2010 (poster)

Abstract
Policy search is a successful approach to reinforcement learning. However, policy improvements often result in the loss of information. Hence, it has been marred by premature convergence and implausible solutions. As first suggested in the context of covariant policy gradients, many of these problems may be addressed by constraining the information loss. In this book chapter, we continue this path of reasoning and suggest the Relative Entropy Policy Search (REPS) method. The resulting method differs significantly from previous policy gradient approaches and yields an exact update step. It works well on typical reinforcement learning benchmark problems. We will also present a real-world applications where a robot employs REPS to learn how to return balls in a game of table tennis.

ei

PDF [BibTex]

PDF [BibTex]


no image
A Maximum Entropy Approach to Semi-supervised Learning

Erkan, A., Altun, Y.

30th International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering (MaxEnt 2010), 30, pages: 80, July 2010 (poster)

Abstract
Maximum entropy (MaxEnt) framework has been studied extensively in supervised learning. Here, the goal is to find a distribution p that maximizes an entropy function while enforcing data constraints so that the expected values of some (pre-defined) features with respect to p match their empirical counterparts approximately. Using different entropy measures, different model spaces for p and different approximation criteria for the data constraints yields a family of discriminative supervised learning methods (e.g., logistic regression, conditional random fields, least squares and boosting). This framework is known as the generalized maximum entropy framework. Semi-supervised learning (SSL) has emerged in the last decade as a promising field that combines unlabeled data along with labeled data so as to increase the accuracy and robustness of inference algorithms. However, most SSL algorithms to date have had trade-offs, e.g., in terms of scalability or applicability to multi-categorical data. We extend the generalized MaxEnt framework to develop a family of novel SSL algorithms. Extensive empirical evaluation on benchmark data sets that are widely used in the literature demonstrates the validity and competitiveness of the proposed algorithms.

ei

PDF PDF [BibTex]

PDF PDF [BibTex]


no image
VerroTouch: High-Frequency Acceleration Feedback for Telerobotic Surgery

Kuchenbecker, K. J., Gewirtz, J., McMahan, W., Standish, D., Martin, P., Bohren, J., Mendoza, P. J., Lee, D. I.

Hands-on demonstration presented at EuroHaptics, Amsterdam, Netherlands, Amsterdam, Netherlands, July 2010 (misc)

hi

[BibTex]

[BibTex]


no image
TexturePad: Realistic Rendering of Haptic Textures

Romano, J. M., Landin, N., McMahan, W., Kuchenbecker, K. J.

Hands-on demonstration presented at EuroHaptics, Amsterdam, Netherlands, July 2010 (misc)

hi

[BibTex]

[BibTex]


no image
The effect of positioning aids on PET quantification following MR-based attenuation correction (AC) in PET/MR imaging

Mantlik, F., Hofmann, M., Kupferschläger, J., Werner, M., Pichler, B., Beyer, T.

Journal of Nuclear Medicine, 51(Supplement 2):1418 , June 2010 (poster)

Abstract
Objectives: We study the quantitative effect of not accounting for the attenuation of patient positioning aids in combined PET/MR imaging. Methods: Positioning aids cannot be detected with conventional MR sequences. We mimic this effect using PET/CT data (Biograph HiRez16) with the foams removed from CT images prior to using them for CT-AC. PET/CT data were acquired using standard parameters (phantoms/patients): 120/140 kVp, 30/250 mAs, 5 mm slices, OSEM (4i, 8s, 5 mm filter) following CT-AC. First, a uniform 68Ge-cylinder was positioned centrally in the PET/CT and fixed with a vacuum mattress (10 cm thick). Second, the same cylinder was placed in 3 positioning aids from the PET/MR (BrainPET-3T). Third, 5 head/neck patients who were fixed in a vacuum mattress were selected. In all 3 studies PET recon post CT-AC based on measured CT images was used as the reference (mCT-AC). The PET/MR set-up was mimicked by segmenting the foam inserts from the measured CT images and setting their voxel values to -1000 HU (air). PET images were reconstructed using CT-AC with the segmented CT images (sCT-AC). PET images with mCT- and sCT-AC were compared. Results: sCT-AC underestimated PET voxel values in the phantom by 6.7% on average compared to mCT-AC with the vacuum mattress in place. 5% of the PET voxels were underestimated by >=10%. Not accounting for MR positioning aids during AC led to an underestimation of 2.8% following sCT-AC, with 5% of the PET voxels being underestimated by >=7% wrt mCT-AC. Preliminary evaluation of the patient data indicates a slightly higher bias from not accounting for patient positioning aids (mean: -9.1%, 5% percentile: -11.2%). Conclusions: A considerable and regionally variable underestimation of the PET activity following AC is observed when positioning aids are not accounted for. This bias may become relevant in neurological activation or dementia studies with PET/MR

ei

Web [BibTex]

Web [BibTex]


no image
Multi-task Learning for Zero Training Brain-Computer Interfaces

Alamgir, M., Grosse-Wentrup, M., Altun, Y.

4th International BCI Meeting, June 2010 (poster)

Abstract
Brain-computer interfaces (BCIs) are limited in their applicability in everyday settings by the current necessity to record subject-specific calibration data prior to actual use of the BCI for communication. In this work, we utilize the framework of multitask learning to construct a BCI that can be used without any subject-specific calibration process, i.e., with zero training data. In BCIs based on EEG or MEG, the predictive function of a subject's intention is commonly modeled as a linear combination of some features derived from spatial and spectral recordings. The coefficients of this combination correspond to the importance of the features for predicting the intention of the subject. These coefficients are usually learned separately for each subject due to inter-subject variability. Principle feature characteristics, however, are known to remain invariant across subject. For example, it is well known that in motor imagery paradigms spectral power in the mu- and beta frequency ranges (roughly 8-14 Hz and 20-30 Hz, respectively) over sensorimotor areas provides most information on a subject's intention. Based on this assumption, we define the intention prediction function as a combination of subject-invariant and subject-specific models, and propose a machine learning method that infers these models jointly using data from multiple subjects. This framework leads to an out-of-the-box intention predictor, where the subject-invariant model can be employed immediately for a subject with no prior data. We present a computationally efficient method to further improve this BCI to incorporate subject-specific variations as such data becomes available. To overcome the problem of high dimensional feature spaces in this context, we further present a new method for finding the relevance of different recording channels according to actions performed by subjects. Usually, the BCI feature representation is a concatenation of spectral features extracted from different channels. This representation, however, is redundant, as recording channels at different spatial locations typically measure overlapping sources within the brain due to volume conduction. We address this problem by assuming that the relevance of different spectral bands is invariant across channels, while learning different weights for each recording electrode. This framework allows us to significantly reduce the feature space dimensionality without discarding potentially useful information. Furthermore, the resulting out-of-the-box BCI can be adapted to different experimental setups, for example EEG caps with different numbers of channels, as long as there exists a mapping across channels in different setups. We demonstrate the feasibility of our approach on a set of experimental EEG data recorded during a standard two-class motor imagery paradigm from a total of ten healthy subjects. Specifically, we show that satisfactory classification results can be achieved with zero training data, and that combining prior recordings with subject-specific calibration data substantially outperforms using subject-specific data only.

ei

Web [BibTex]