Header logo is


2011


Thumb xl screen shot 2015 08 23 at 15.47.13
Multi-Modal Scene Understanding for Robotic Grasping

Bohg, J.

(2011:17):vi, 194, Trita-CSC-A, KTH Royal Institute of Technology, KTH, Computer Vision and Active Perception, CVAP, Centre for Autonomous Systems, CAS, KTH, Centre for Autonomous Systems, CAS, December 2011 (phdthesis)

Abstract
Current robotics research is largely driven by the vision of creating an intelligent being that can perform dangerous, difficult or unpopular tasks. These can for example be exploring the surface of planet mars or the bottom of the ocean, maintaining a furnace or assembling a car. They can also be more mundane such as cleaning an apartment or fetching groceries. This vision has been pursued since the 1960s when the first robots were built. Some of the tasks mentioned above, especially those in industrial manufacturing, are already frequently performed by robots. Others are still completely out of reach. Especially, household robots are far away from being deployable as general purpose devices. Although advancements have been made in this research area, robots are not yet able to perform household chores robustly in unstructured and open-ended environments given unexpected events and uncertainty in perception and execution.In this thesis, we are analyzing which perceptual and motor capabilities are necessary for the robot to perform common tasks in a household scenario. In that context, an essential capability is to understand the scene that the robot has to interact with. This involves separating objects from the background but also from each other.Once this is achieved, many other tasks become much easier. Configuration of object scan be determined; they can be identified or categorized; their pose can be estimated; free and occupied space in the environment can be outlined.This kind of scene model can then inform grasp planning algorithms to finally pick up objects.However, scene understanding is not a trivial problem and even state-of-the-art methods may fail. Given an incomplete, noisy and potentially erroneously segmented scene model, the questions remain how suitable grasps can be planned and how they can be executed robustly.In this thesis, we propose to equip the robot with a set of prediction mechanisms that allow it to hypothesize about parts of the scene it has not yet observed. Additionally, the robot can also quantify how uncertain it is about this prediction allowing it to plan actions for exploring the scene at specifically uncertain places. We consider multiple modalities including monocular and stereo vision, haptic sensing and information obtained through a human-robot dialog system. We also study several scene representations of different complexity and their applicability to a grasping scenario. Given an improved scene model from this multi-modal exploration, grasps can be inferred for each object hypothesis. Dependent on whether the objects are known, familiar or unknown, different methodologies for grasp inference apply. In this thesis, we propose novel methods for each of these cases. Furthermore,we demonstrate the execution of these grasp both in a closed and open-loop manner showing the effectiveness of the proposed methods in real-world scenarios.

am

pdf [BibTex]

2011


pdf [BibTex]


no image
Crowdsourcing for optimisation of deconvolution methods via an iPhone application

Lang, A.

Hochschule Reutlingen, Germany, April 2011 (mastersthesis)

ei

[BibTex]

[BibTex]


no image
Learning functions with kernel methods

Dinuzzo, F.

University of Pavia, Italy, January 2011 (phdthesis)

ei

PDF [BibTex]

PDF [BibTex]


no image
Model Learning in Robot Control

Nguyen-Tuong, D.

Albert-Ludwigs-Universität Freiburg, Germany, 2011 (phdthesis)

ei

[BibTex]

[BibTex]


no image
Iterative path integral stochastic optimal control: Theory and applications to motor control

Theodorou, E. A.

University of Southern California, University of Southern California, Los Angeles, CA, 2011 (phdthesis)

am

PDF [BibTex]

PDF [BibTex]


no image
Learning of grasp selection based on shape-templates

Herzog, A.

Karlsruhe Institute of Technology, 2011 (mastersthesis)

am

[BibTex]

[BibTex]


no image
Ferromagnetism of ZnO influenced by physical and chemical treatment

Chen, Y.

Universität Stuttgart, Stuttgart, 2011 (mastersthesis)

mms

[BibTex]

[BibTex]


no image
Herstellung und Charakterisierung von ultradünnen, funktionellen CoFeB Filmen

Streckenbach, F.

Hochschule Esslingen / Hochschule Aalen, Esslingen / Aalen, 2011 (mastersthesis)

mms

[BibTex]

[BibTex]


no image
Hydrogen adsorption on metal-organic frameworks

Streppel, B.

Universität Stuttgart, Stuttgart, 2011 (phdthesis)

mms

link (url) [BibTex]

link (url) [BibTex]


no image
Piezo driven strain effects on magneto-crystalline anisotropy

Badr, E.

Universität Stuttgart, Stuttgart, 2011 (mastersthesis)

mms

[BibTex]

[BibTex]


no image
Magnetooptische Untersuchungen an granularen und beschichteten MgB2 Filmen

Stahl, C.

Universität Stuttgart, Stuttgart, 2011 (mastersthesis)

mms

[BibTex]

[BibTex]


no image
Mikromagnetismus der Wechselwirkung von Spinwellen mit Domänenwänden in Ferromagneten

Macke, S.

Universität Stuttgart, Stuttgart, 2011 (phdthesis)

mms

[BibTex]

[BibTex]


Thumb xl thesis
Spatial Models of Human Motion

Soren Hauberg

University of Copenhagen, 2011 (phdthesis)

ps

PDF [BibTex]

PDF [BibTex]


no image
Herstellung und Qualifizierung gesputterter Magnesiumdiboridschichten

Breyer, F.

Hochschule Aalen, Aalen, 2011 (mastersthesis)

mms

[BibTex]

[BibTex]


no image
Study of krypton/xenon storage and separation in microporous frameworks

Soleimani Dorcheh, A.

Universität Darmstadt, Darmstadt, 2011 (mastersthesis)

mms

[BibTex]

[BibTex]