Header logo is


2018


Thumb xl us20180021892a1 20180125 d00000
Method and device for reversibly attaching a phase changing metal to an object

Zhou Ye, G. Z. L. M. S.

US Patent Application US 2018/0021892 A1, January 2018 (patent)

Abstract
A method for reversibly attaching a phase changing metal to an object, the method comprising the steps of: providing a substrate having at least one surface at which the phase changing metal is attached, heating the phase changing metal above a phase changing temperature at which the phase changing metal changes its phase from solid to liquid, bringing the phase changing metal, when the phase changing metal is in the liquid phase or before the phase changing metal is brought into the liquid phase, into contact with the object, permitting the phase changing metal to cool below the phase changing temperature, whereby the phase changing metal becomes solid and the object and the phase changing metal become attached to each other, reheating the phase changing metal above the phase changing temperature to liquefy the phase changing metal, and removing the substrate from the object, with the phase changing metal separating from the object and remaining with the substrate.

pi

US Patent Application Database US Patent Application (PDF) [BibTex]


Thumb xl us20180012693a1 20180111 d00000
Method of fabricating a shape-changeable magentic member, method of producing a shape changeable magnetic member and shape changeable magnetic member

Guo Zhan Lum, Z. Y. M. S.

US Patent Application US 2018/0012693 A1, January 2018 (patent)

Abstract
The present invention relates to a method of fabricating a shape-changeable magnetic member comprising a plurality of segments with each segment being able to be magnetized with a desired magnitude and orientation of magnetization, to a method of producing a shape changeable magnetic member composed of a plurality of segments and to a shape changeable magnetic member.

pi

US Patent Application Database US Patent Application (PDF) [BibTex]


Thumb xl thumb 9780262028370
Advanced Structured Prediction

Nowozin, S., Gehler, P. V., Jancsary, J., Lampert, C. H.

Advanced Structured Prediction, pages: 432, Neural Information Processing Series, MIT Press, November 2014 (book)

Abstract
The goal of structured prediction is to build machine learning models that predict relational information that itself has structure, such as being composed of multiple interrelated parts. These models, which reflect prior knowledge, task-specific relations, and constraints, are used in fields including computer vision, speech recognition, natural language processing, and computational biology. They can carry out such tasks as predicting a natural language sentence, or segmenting an image into meaningful components. These models are expressive and powerful, but exact computation is often intractable. A broad research effort in recent years has aimed at designing structured prediction models and approximate inference and learning procedures that are computationally efficient. This volume offers an overview of this recent research in order to make the work accessible to a broader research community. The chapters, by leading researchers in the field, cover a range of topics, including research trends, the linear programming relaxation approach, innovations in probabilistic modeling, recent theoretical progress, and resource-aware learning.

ps

publisher link (url) [BibTex]

publisher link (url) [BibTex]


Thumb xl toc image patent
Convertor

Fischer, P., Mark, A.

May 2014 (patent)

pf

[BibTex]

[BibTex]


no image
Method and device for blind correction of optical aberrations in a digital image

Schuler, C., Hirsch, M., Harmeling, S., Schölkopf, B.

International Patent Application, No. PCT/EP2012/068868, April 2014 (patent)

ei

[BibTex]


no image
Learning Motor Skills: From Algorithms to Robot Experiments

Kober, J., Peters, J.

97, pages: 191, Springer Tracts in Advanced Robotics, Springer, 2014 (book)

ei

DOI [BibTex]

DOI [BibTex]


no image
The Playful Machine - Theoretical Foundation and Practical Realization of Self-Organizing Robots

Der, R., Martius, G.

Springer, Berlin Heidelberg, 2012 (book)

Abstract
Autonomous robots may become our closest companions in the near future. While the technology for physically building such machines is already available today, a problem lies in the generation of the behavior for such complex machines. Nature proposes a solution: young children and higher animals learn to master their complex brain-body systems by playing. Can this be an option for robots? How can a machine be playful? The book provides answers by developing a general principle---homeokinesis, the dynamical symbiosis between brain, body, and environment---that is shown to drive robots to self-determined, individual development in a playful and obviously embodiment-related way: a dog-like robot starts playing with a barrier, eventually jumping or climbing over it; a snakebot develops coiling and jumping modes; humanoids develop climbing behaviors when fallen into a pit, or engage in wrestling-like scenarios when encountering an opponent. The book also develops guided self-organization, a new method that helps to make the playful machines fit for fulfilling tasks in the real world.

al

link (url) [BibTex]


Thumb xl bookcdc4cv
Consumer Depth Cameras for Computer Vision - Research Topics and Applications

Fossati, A., Gall, J., Grabner, H., Ren, X., Konolige, K.

Advances in Computer Vision and Pattern Recognition, Springer, 2012 (book)

ps

workshop publisher's site [BibTex]

workshop publisher's site [BibTex]