Header logo is


2020


A gamified app that helps people overcome self-limiting beliefs by promoting metacognition
A gamified app that helps people overcome self-limiting beliefs by promoting metacognition

Amo, V., Lieder, F.

pages: 6, SIG 8 Meets SIG 16, September 2020 (conference)

Abstract
Previous research has shown that approaching learning with a growth mindset is key for maintaining motivation and overcoming setbacks. Mindsets are systems of beliefs that people hold to be true. They influence a person's attitudes, thoughts, and emotions when they learn something new or encounter challenges. In clinical psychology, metareasoning (reflecting on one's mental processes) and meta-awareness (recognizing thoughts as mental events instead of equating them to reality) have proven effective for overcoming maladaptive thinking styles. Hence, they are potentially an effective method for overcoming self-limiting beliefs in other domains as well. However, the potential of integrating assisted metacognition into mindset interventions has not been explored yet. Here, we propose that guiding and training people on how to leverage metareasoning and meta-awareness for overcoming self-limiting beliefs can significantly enhance the effectiveness of mindset interventions. To test this hypothesis, we develop a gamified mobile application that guides and trains people to use metacognitive strategies based on Cognitive Restructuring (CR) and Acceptance Commitment Therapy (ACT) techniques. The application helps users to identify and overcome self-limiting beliefs by working with aversive emotions when they are triggered by fixed mindsets in real-life situations. Our app aims to help people sustain their motivation to learn when they face inner obstacles (e.g. anxiety, frustration, and demotivation). We expect the application to be an effective tool for helping people better understand and develop the metacognitive skills of emotion regulation and self-regulation that are needed to overcome self-limiting beliefs and develop growth mindsets.

re

A gamified app that helps people overcome self-limiting beliefs by promoting metacognition [BibTex]


no image
Algorithmic Recourse: from Counterfactual Explanations to Interventions

Karimi, A., Schölkopf, B., Valera, I.

37th International Conference on Machine Learning (ICML), July 2020 (conference) Submitted

ei plg

[BibTex]

[BibTex]


Learning to Dress 3D People in Generative Clothing
Learning to Dress 3D People in Generative Clothing

Ma, Q., Yang, J., Ranjan, A., Pujades, S., Pons-Moll, G., Tang, S., Black, M. J.

In Computer Vision and Pattern Recognition (CVPR), June 2020 (inproceedings)

Abstract
Three-dimensional human body models are widely used in the analysis of human pose and motion. Existing models, however, are learned from minimally-clothed 3D scans and thus do not generalize to the complexity of dressed people in common images and videos. Additionally, current models lack the expressive power needed to represent the complex non-linear geometry of pose-dependent clothing shape. To address this, we learn a generative 3D mesh model of clothed people from 3D scans with varying pose and clothing. Specifically, we train a conditional Mesh-VAE-GAN to learn the clothing deformation from the SMPL body model, making clothing an additional term on SMPL. Our model is conditioned on both pose and clothing type, giving the ability to draw samples of clothing to dress different body shapes in a variety of styles and poses. To preserve wrinkle detail, our Mesh-VAE-GAN extends patchwise discriminators to 3D meshes. Our model, named CAPE, represents global shape and fine local structure, effectively extending the SMPL body model to clothing. To our knowledge, this is the first generative model that directly dresses 3D human body meshes and generalizes to different poses.

ps

arxiv project page [BibTex]


no image
Model-Agnostic Counterfactual Explanations for Consequential Decisions

Karimi, A., Barthe, G., Balle, B., Valera, I.

Proceedings of the 23rd International Conference on Artificial Intelligence and Statistics (AISTATS), June 2020 (conference) Accepted

ei plg

arXiv [BibTex]

arXiv [BibTex]


Generating 3D People in Scenes without People
Generating 3D People in Scenes without People

Zhang, Y., Hassan, M., Neumann, H., Black, M. J., Tang, S.

In Computer Vision and Pattern Recognition (CVPR), June 2020 (inproceedings)

Abstract
We present a fully-automatic system that takes a 3D scene and generates plausible 3D human bodies that are posed naturally in that 3D scene. Given a 3D scene without people, humans can easily imagine how people could interact with the scene and the objects in it. However, this is a challenging task for a computer as solving it requires (1) the generated human bodies should be semantically plausible with the 3D environment, e.g. people sitting on the sofa or cooking near the stove; (2) the generated human-scene interaction should be physically feasible in the way that the human body and scene do not interpenetrate while, at the same time, body-scene contact supports physical interactions. To that end, we make use of the surface-based 3D human model SMPL-X. We first train a conditional variational autoencoder to predict semantically plausible 3D human pose conditioned on latent scene representations, then we further refine the generated 3D bodies using scene constraints to enforce feasible physical interaction. We show that our approach is able to synthesize realistic and expressive 3D human bodies that naturally interact with 3D environment. We perform extensive experiments demonstrating that our generative framework compares favorably with existing methods, both qualitatively and quantitatively. We believe that our scene-conditioned 3D human generation pipeline will be useful for numerous applications; e.g. to generate training data for human pose estimation, in video games and in VR/AR.

ps

PDF link (url) [BibTex]

PDF link (url) [BibTex]


no image
Where Does It End? - Reasoning About Hidden Surfaces by Object Intersection Constraints

Strecke, M., Stückler, J.

In Proc. of the IEEE/CVF Conf. on Computer Vision and Pattern Recognition (CVPR), IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 2020 (inproceedings) Accepted

ev

[BibTex]

[BibTex]


no image
A Continuous-time Perspective for Modeling Acceleration in Riemannian Optimization

F Alimisis, F., Orvieto, A., Becigneul, G., Lucchi, A.

Proceedings of the 23rd International Conference on Artificial Intelligence and Statistics (AISTATS), June 2020 (conference) Accepted

ei

[BibTex]

[BibTex]


no image
A Kernel Mean Embedding Approach to Reducing Conservativeness in Stochastic Programming and Control

Zhu, J., Diehl, M., Schölkopf, B.

2nd Annual Conference on Learning for Dynamics and Control (L4DC), June 2020 (conference) Accepted

ei

arXiv [BibTex]

arXiv [BibTex]


Learning Physics-guided Face Relighting under Directional Light
Learning Physics-guided Face Relighting under Directional Light

Nestmeyer, T., Lalonde, J., Matthews, I., Lehrmann, A. M.

In Conference on Computer Vision and Pattern Recognition, IEEE/CVF, June 2020 (inproceedings) Accepted

Abstract
Relighting is an essential step in realistically transferring objects from a captured image into another environment. For example, authentic telepresence in Augmented Reality requires faces to be displayed and relit consistent with the observer's scene lighting. We investigate end-to-end deep learning architectures that both de-light and relight an image of a human face. Our model decomposes the input image into intrinsic components according to a diffuse physics-based image formation model. We enable non-diffuse effects including cast shadows and specular highlights by predicting a residual correction to the diffuse render. To train and evaluate our model, we collected a portrait database of 21 subjects with various expressions and poses. Each sample is captured in a controlled light stage setup with 32 individual light sources. Our method creates precise and believable relighting results and generalizes to complex illumination conditions and challenging poses, including when the subject is not looking straight at the camera.

ps

Paper [BibTex]

Paper [BibTex]


{VIBE}: Video Inference for Human Body Pose and Shape Estimation
VIBE: Video Inference for Human Body Pose and Shape Estimation

Kocabas, M., Athanasiou, N., Black, M. J.

In Computer Vision and Pattern Recognition (CVPR), June 2020 (inproceedings)

Abstract
Human motion is fundamental to understanding behavior. Despite progress on single-image 3D pose and shape estimation, existing video-based state-of-the-art methodsfail to produce accurate and natural motion sequences due to a lack of ground-truth 3D motion data for training. To address this problem, we propose “Video Inference for Body Pose and Shape Estimation” (VIBE), which makes use of an existing large-scale motion capture dataset (AMASS) together with unpaired, in-the-wild, 2D keypoint annotations. Our key novelty is an adversarial learning framework that leverages AMASS to discriminate between real human motions and those produced by our temporal pose and shape regression networks. We define a temporal network architecture and show that adversarial training, at the sequence level, produces kinematically plausible motion sequences without in-the-wild ground-truth 3D labels. We perform extensive experimentation to analyze the importance of motion and demonstrate the effectiveness of VIBE on challenging 3D pose estimation datasets, achieving state-of-the-art performance. Code and pretrained models are available at https://github.com/mkocabas/VIBE

ps

arXiv code [BibTex]

arXiv code [BibTex]


no image
Mixed-curvature Variational Autoencoders

Skopek, O., Ganea, O., Becigneul, G.

8th International Conference on Learning Representations (ICLR), April 2020 (conference) Accepted

ei

link (url) [BibTex]

link (url) [BibTex]


From Variational to Deterministic Autoencoders
From Variational to Deterministic Autoencoders

Ghosh*, P., Sajjadi*, M. S. M., Vergari, A., Black, M. J., Schölkopf, B.

8th International Conference on Learning Representations (ICLR) , April 2020, *equal contribution (conference) Accepted

Abstract
Variational Autoencoders (VAEs) provide a theoretically-backed framework for deep generative models. However, they often produce “blurry” images, which is linked to their training objective. Sampling in the most popular implementation, the Gaussian VAE, can be interpreted as simply injecting noise to the input of a deterministic decoder. In practice, this simply enforces a smooth latent space structure. We challenge the adoption of the full VAE framework on this specific point in favor of a simpler, deterministic one. Specifically, we investigate how substituting stochasticity with other explicit and implicit regularization schemes can lead to a meaningful latent space without having to force it to conform to an arbitrarily chosen prior. To retrieve a generative mechanism for sampling new data points, we propose to employ an efficient ex-post density estimation step that can be readily adopted both for the proposed deterministic autoencoders as well as to improve sample quality of existing VAEs. We show in a rigorous empirical study that regularized deterministic autoencoding achieves state-of-the-art sample quality on the common MNIST, CIFAR-10 and CelebA datasets.

ei ps

arXiv [BibTex]

arXiv [BibTex]


Chained Representation Cycling: Learning to Estimate 3D Human Pose and Shape by Cycling Between Representations
Chained Representation Cycling: Learning to Estimate 3D Human Pose and Shape by Cycling Between Representations

Rueegg, N., Lassner, C., Black, M. J., Schindler, K.

In Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-20), Febuary 2020 (inproceedings)

Abstract
The goal of many computer vision systems is to transform image pixels into 3D representations. Recent popular models use neural networks to regress directly from pixels to 3D object parameters. Such an approach works well when supervision is available, but in problems like human pose and shape estimation, it is difficult to obtain natural images with 3D ground truth. To go one step further, we propose a new architecture that facilitates unsupervised, or lightly supervised, learning. The idea is to break the problem into a series of transformations between increasingly abstract representations. Each step involves a cycle designed to be learnable without annotated training data, and the chain of cycles delivers the final solution. Specifically, we use 2D body part segments as an intermediate representation that contains enough information to be lifted to 3D, and at the same time is simple enough to be learned in an unsupervised way. We demonstrate the method by learning 3D human pose and shape from un-paired and un-annotated images. We also explore varying amounts of paired data and show that cycling greatly alleviates the need for paired data. While we present results for modeling humans, our formulation is general and can be applied to other vision problems.

ps

pdf [BibTex]

pdf [BibTex]


no image
More Powerful Selective Kernel Tests for Feature Selection

Lim, J. N., Yamada, M., Jitkrittum, W., Terada, Y., Matsui, S., Shimodaira, H.

Proceedings of the 23rd International Conference on Artificial Intelligence and Statistics (AISTATS), 2020 (conference) To be published

ei

arXiv [BibTex]

arXiv [BibTex]


Learning Unsupervised Hierarchical Part Decomposition of 3D Objects from a Single RGB Image
Learning Unsupervised Hierarchical Part Decomposition of 3D Objects from a Single RGB Image

Paschalidou, D., Gool, L., Geiger, A.

In Proceedings IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), IEEE International Conference on Computer Vision and Pattern Recognition (CVPR) 2020, 2020 (inproceedings)

Abstract
Humans perceive the 3D world as a set of distinct objects that are characterized by various low-level (geometry, reflectance) and high-level (connectivity, adjacency, symmetry) properties. Recent methods based on convolutional neural networks (CNNs) demonstrated impressive progress in 3D reconstruction, even when using a single 2D image as input. However, the majority of these methods focuses on recovering the local 3D geometry of an object without considering its part-based decomposition or relations between parts. We address this challenging problem by proposing a novel formulation that allows to jointly recover the geometry of a 3D object as a set of primitives as well as their latent hierarchical structure without part-level supervision. Our model recovers the higher level structural decomposition of various objects in the form of a binary tree of primitives, where simple parts are represented with fewer primitives and more complex parts are modeled with more components. Our experiments on the ShapeNet and D-FAUST datasets demonstrate that considering the organization of parts indeed facilitates reasoning about 3D geometry.

avg

pdf suppmat Video Project Page [BibTex]

pdf suppmat Video Project Page [BibTex]


no image
TUM Flyers: Vision-Based MAV Navigation for Systematic Inspection of Structures

Usenko, V., Stumberg, L. V., Stückler, J., Cremers, D.

In Bringing Innovative Robotic Technologies from Research Labs to Industrial End-users: The Experience of the European Robotics Challenges, 136, pages: 189-209, Springer International Publishing, 2020 (inbook)

ev

[BibTex]

[BibTex]


no image
ACTrain: Ein KI-basiertes Aufmerksamkeitstraining für die Wissensarbeit [ACTrain: An AI-based attention training for knowledge work]

Wirzberger, M., Oreshnikov, I., Passy, J., Lado, A., Shenhav, A., Lieder, F.

66th Spring Conference of the German Ergonomics Society, 2020 (conference)

Abstract
Unser digitales Zeitalter lebt von Informationen und stellt unsere begrenzte Verarbeitungskapazität damit täglich auf die Probe. Gerade in der Wissensarbeit haben ständige Ablenkungen erhebliche Leistungseinbußen zur Folge. Unsere intelligente Anwendung ACTrain setzt genau an dieser Stelle an und verwandelt Computertätigkeiten in eine Trainingshalle für den Geist. Feedback auf Basis maschineller Lernverfahren zeigt anschaulich den Wert auf, sich nicht von einer selbst gewählten Aufgabe ablenken zu lassen. Diese metakognitive Einsicht soll zum Durchhalten motivieren und das zugrunde liegende Fertigkeitsniveau der Aufmerksamkeitskontrolle stärken. In laufenden Feldexperimenten untersuchen wir die Frage, ob das Training mit diesem optimalen Feedback die Aufmerksamkeits- und Selbstkontrollfertigkeiten im Vergleich zu einer Kontrollgruppe ohne Feedback verbessern kann.

re sf

link (url) [BibTex]


no image
Computationally Tractable Riemannian Manifolds for Graph Embeddings

Cruceru, C., Becigneul, G., Ganea, O.

37th International Conference on Machine Learning (ICML), 2020 (conference) Submitted

ei

[BibTex]

[BibTex]


Towards Unsupervised Learning of Generative Models for 3D Controllable Image Synthesis
Towards Unsupervised Learning of Generative Models for 3D Controllable Image Synthesis

Liao, Y., Schwarz, K., Mescheder, L., Geiger, A.

In Proceedings IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), IEEE International Conference on Computer Vision and Pattern Recognition (CVPR) 2020, 2020 (inproceedings)

Abstract
In recent years, Generative Adversarial Networks have achieved impressive results in photorealistic image synthesis. This progress nurtures hopes that one day the classical rendering pipeline can be replaced by efficient models that are learned directly from images. However, current image synthesis models operate in the 2D domain where disentangling 3D properties such as camera viewpoint or object pose is challenging. Furthermore, they lack an interpretable and controllable representation. Our key hypothesis is that the image generation process should be modeled in 3D space as the physical world surrounding us is intrinsically three-dimensional. We define the new task of 3D controllable image synthesis and propose an approach for solving it by reasoning both in 3D space and in the 2D image domain. We demonstrate that our model is able to disentangle latent 3D factors of simple multi-object scenes in an unsupervised fashion from raw images. Compared to pure 2D baselines, it allows for synthesizing scenes that are consistent wrt. changes in viewpoint or object pose. We further evaluate various 3D representations in terms of their usefulness for this challenging task.

avg

pdf suppmat Video Project Page [BibTex]

pdf suppmat Video Project Page [BibTex]


no image
Planning from Images with Deep Latent Gaussian Process Dynamics

Bosch, N., Achterhold, J., Leal-Taixe, L., Stückler, J.

2nd Annual Conference on Learning for Dynamics and Control (L4DC) , 2020 (conference) Accepted

ev

[BibTex]

[BibTex]


no image
Practical Accelerated Optimization on Riemannian Manifolds

F Alimisis, F., Orvieto, A., Becigneul, G., Lucchi, A.

37th International Conference on Machine Learning (ICML), 2020 (conference) Submitted

ei

[BibTex]

[BibTex]


Exploring Data Aggregation in Policy Learning for Vision-based Urban Autonomous Driving
Exploring Data Aggregation in Policy Learning for Vision-based Urban Autonomous Driving

Prakash, A., Behl, A., Ohn-Bar, E., Chitta, K., Geiger, A.

In Proceedings IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), IEEE International Conference on Computer Vision and Pattern Recognition (CVPR) 2020, 2020 (inproceedings)

Abstract
Data aggregation techniques can significantly improve vision-based policy learning within a training environment, e.g., learning to drive in a specific simulation condition. However, as on-policy data is sequentially sampled and added in an iterative manner, the policy can specialize and overfit to the training conditions. For real-world applications, it is useful for the learned policy to generalize to novel scenarios that differ from the training conditions. To improve policy learning while maintaining robustness when training end-to-end driving policies, we perform an extensive analysis of data aggregation techniques in the CARLA environment. We demonstrate how the majority of them have poor generalization performance, and develop a novel approach with empirically better generalization performance compared to existing techniques. Our two key ideas are (1) to sample critical states from the collected on-policy data based on the utility they provide to the learned policy in terms of driving behavior, and (2) to incorporate a replay buffer which progressively focuses on the high uncertainty regions of the policy's state distribution. We evaluate the proposed approach on the CARLA NoCrash benchmark, focusing on the most challenging driving scenarios with dense pedestrian and vehicle traffic. Our approach improves driving success rate by 16% over state-of-the-art, achieving 87% of the expert performance while also reducing the collision rate by an order of magnitude without the use of any additional modality, auxiliary tasks, architectural modifications or reward from the environment.

avg

pdf suppmat Video Project Page [BibTex]

pdf suppmat Video Project Page [BibTex]


Differentiation of blackbox combinatorial solvers
Differentiation of blackbox combinatorial solvers

Vlastelica, M., Paulus, A., Musil, V., Martius, G., Rolı́nek, M.

In International Conference on Learning Representations, ICLR’20, 2020 (incollection)

al

link (url) [BibTex]

link (url) [BibTex]


no image
Constant Curvature Graph Convolutional Networks

Bachmann*, G., Becigneul*, G., Ganea, O.

37th International Conference on Machine Learning (ICML), 2020, *equal contribution (conference) Submitted

ei

[BibTex]

[BibTex]


Learning Situational Driving
Learning Situational Driving

Ohn-Bar, E., Prakash, A., Behl, A., Chitta, K., Geiger, A.

In Proceedings IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), IEEE International Conference on Computer Vision and Pattern Recognition (CVPR) 2020, 2020 (inproceedings)

Abstract
Human drivers have a remarkable ability to drive in diverse visual conditions and situations, e.g., from maneuvering in rainy, limited visibility conditions with no lane markings to turning in a busy intersection while yielding to pedestrians. In contrast, we find that state-of-the-art sensorimotor driving models struggle when encountering diverse settings with varying relationships between observation and action. To generalize when making decisions across diverse conditions, humans leverage multiple types of situation-specific reasoning and learning strategies. Motivated by this observation, we develop a framework for learning a situational driving policy that effectively captures reasoning under varying types of scenarios. Our key idea is to learn a mixture model with a set of policies that can capture multiple driving modes. We first optimize the mixture model through behavior cloning, and show it to result in significant gains in terms of driving performance in diverse conditions. We then refine the model by directly optimizing for the driving task itself, i.e., supervised with the navigation task reward. Our method is more scalable than methods assuming access to privileged information, e.g., perception labels, as it only assumes demonstration and reward-based supervision. We achieve over 98% success rate on the CARLA driving benchmark as well as state-of-the-art performance on a newly introduced generalization benchmark.

avg

pdf suppmat Video Project Page [BibTex]

pdf suppmat Video Project Page [BibTex]


On Joint Estimation of Pose, Geometry and svBRDF from a Handheld Scanner
On Joint Estimation of Pose, Geometry and svBRDF from a Handheld Scanner

Schmitt, C., Donne, S., Riegler, G., Koltun, V., Geiger, A.

In Proceedings IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), IEEE International Conference on Computer Vision and Pattern Recognition (CVPR) 2020, 2020 (inproceedings)

Abstract
We propose a novel formulation for joint recovery of camera pose, object geometry and spatially-varying BRDF. The input to our approach is a sequence of RGB-D images captured by a mobile, hand-held scanner that actively illuminates the scene with point light sources. Compared to previous works that jointly estimate geometry and materials from a hand-held scanner, we formulate this problem using a single objective function that can be minimized using off-the-shelf gradient-based solvers. By integrating material clustering as a differentiable operation into the optimization process, we avoid pre-processing heuristics and demonstrate that our model is able to determine the correct number of specular materials independently. We provide a study on the importance of each component in our formulation and on the requirements of the initial geometry. We show that optimizing over the poses is crucial for accurately recovering fine details and that our approach naturally results in a semantically meaningful material segmentation.

avg

pdf Project Page [BibTex]

pdf Project Page [BibTex]


no image
DirectShape: Photometric Alignment of Shape Priors for Visual Vehicle Pose and Shape Estimation

Wang, R., Yang, N., Stückler, J., Cremers, D.

In Accepted for IEEE international Conference on Robotics and Automation (ICRA), 2020, arXiv:1904.10097 (inproceedings) Accepted

ev

[BibTex]

[BibTex]


Differentiable Volumetric Rendering: Learning Implicit 3D Representations without 3D Supervision
Differentiable Volumetric Rendering: Learning Implicit 3D Representations without 3D Supervision

Niemeyer, M., Mescheder, L., Oechsle, M., Geiger, A.

In Proceedings IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), IEEE International Conference on Computer Vision and Pattern Recognition (CVPR) 2020, 2020 (inproceedings)

Abstract
Learning-based 3D reconstruction methods have shown impressive results. However, most methods require 3D supervision which is often hard to obtain for real-world datasets. Recently, several works have proposed differentiable rendering techniques to train reconstruction models from RGB images. Unfortunately, these approaches are currently restricted to voxel- and mesh-based representations, suffering from discretization or low resolution. In this work, we propose a differentiable rendering formulation for implicit shape and texture representations. Implicit representations have recently gained popularity as they represent shape and texture continuously. Our key insight is that depth gradients can be derived analytically using the concept of implicit differentiation. This allows us to learn implicit shape and texture representations directly from RGB images. We experimentally show that our single-view reconstructions rival those learned with full 3D supervision. Moreover, we find that our method can be used for multi-view 3D reconstruction, directly resulting in watertight meshes.

avg

pdf suppmat Video Project Page [BibTex]

pdf suppmat Video Project Page [BibTex]

2012


Towards Multi-DOF model mediated teleoperation: Using vision to augment feedback
Towards Multi-DOF model mediated teleoperation: Using vision to augment feedback

Willaert, B., Bohg, J., Van Brussel, H., Niemeyer, G.

In IEEE International Workshop on Haptic Audio Visual Environments and Games (HAVE), pages: 25-31, October 2012 (inproceedings)

Abstract
In this paper, we address some of the challenges that arise as model-mediated teleoperation is applied to systems with multiple degrees of freedom and multiple sensors. Specifically we use a system with position, force, and vision sensors to explore an environment geometry in two degrees of freedom. The inclusion of vision is proposed to alleviate the difficulties of estimating an increasing number of environment properties. Vision can furthermore increase the predictive nature of model-mediated teleoperation, by effectively predicting touch feedback before the slave is even in contact with the environment. We focus on the case of estimating the location and orientation of a local surface patch at the contact point between the slave and the environment. We describe the various information sources with their respective limitations and create a combined model estimator as part of a multi-d.o.f. model-mediated controller. An experiment demonstrates the feasibility and benefits of utilizing vision sensors in teleoperation.

am

DOI [BibTex]

2012


DOI [BibTex]


Failure Recovery with Shared Autonomy
Failure Recovery with Shared Autonomy

Sankaran, B., Pitzer, B., Osentoski, S.

In International Conference on Intelligent Robots and Systems, October 2012 (inproceedings)

Abstract
Building robots capable of long term autonomy has been a long standing goal of robotics research. Such systems must be capable of performing certain tasks with a high degree of robustness and repeatability. In the context of personal robotics, these tasks could range anywhere from retrieving items from a refrigerator, loading a dishwasher, to setting up a dinner table. Given the complexity of tasks there are a multitude of failure scenarios that the robot can encounter, irrespective of whether the environment is static or dynamic. For a robot to be successful in such situations, it would need to know how to recover from failures or when to ask a human for help. This paper, presents a novel shared autonomy behavioral executive to addresses these issues. We demonstrate how this executive combines generalized logic based recovery and human intervention to achieve continuous failure free operation. We tested the systems over 250 trials of two different use case experiments. Our current algorithm drastically reduced human intervention from 26% to 4% on the first experiment and 46% to 9% on the second experiment. This system provides a new dimension to robot autonomy, where robots can exhibit long term failure free operation with minimal human supervision. We also discuss how the system can be generalized.

am

link (url) [BibTex]

link (url) [BibTex]


Coregistration: Supplemental Material
Coregistration: Supplemental Material

Hirshberg, D., Loper, M., Rachlin, E., Black, M. J.

(No. 4), Max Planck Institute for Intelligent Systems, October 2012 (techreport)

ps

pdf [BibTex]

pdf [BibTex]


Lie Bodies: A Manifold Representation of {3D} Human Shape
Lie Bodies: A Manifold Representation of 3D Human Shape

Freifeld, O., Black, M. J.

In European Conf. on Computer Vision (ECCV), pages: 1-14, Part I, LNCS 7572, (Editors: A. Fitzgibbon et al. (Eds.)), Springer-Verlag, October 2012 (inproceedings)

Abstract
Three-dimensional object shape is commonly represented in terms of deformations of a triangular mesh from an exemplar shape. Existing models, however, are based on a Euclidean representation of shape deformations. In contrast, we argue that shape has a manifold structure: For example, summing the shape deformations for two people does not necessarily yield a deformation corresponding to a valid human shape, nor does the Euclidean difference of these two deformations provide a meaningful measure of shape dissimilarity. Consequently, we define a novel manifold for shape representation, with emphasis on body shapes, using a new Lie group of deformations. This has several advantages. First we define triangle deformations exactly, removing non-physical deformations and redundant degrees of freedom common to previous methods. Second, the Riemannian structure of Lie Bodies enables a more meaningful definition of body shape similarity by measuring distance between bodies on the manifold of body shape deformations. Third, the group structure allows the valid composition of deformations. This is important for models that factor body shape deformations into multiple causes or represent shape as a linear combination of basis shapes. Finally, body shape variation is modeled using statistics on manifolds. Instead of modeling Euclidean shape variation with Principal Component Analysis we capture shape variation on the manifold using Principal Geodesic Analysis. Our experiments show consistent visual and quantitative advantages of Lie Bodies over traditional Euclidean models of shape deformation and our representation can be easily incorporated into existing methods.

ps

pdf supplemental material youtube poster eigenshape video code Project Page Project Page Project Page [BibTex]

pdf supplemental material youtube poster eigenshape video code Project Page Project Page Project Page [BibTex]


Coregistration: Simultaneous alignment and modeling of articulated {3D} shape
Coregistration: Simultaneous alignment and modeling of articulated 3D shape

Hirshberg, D., Loper, M., Rachlin, E., Black, M.

In European Conf. on Computer Vision (ECCV), pages: 242-255, LNCS 7577, Part IV, (Editors: A. Fitzgibbon et al. (Eds.)), Springer-Verlag, October 2012 (inproceedings)

Abstract
Three-dimensional (3D) shape models are powerful because they enable the inference of object shape from incomplete, noisy, or ambiguous 2D or 3D data. For example, realistic parameterized 3D human body models have been used to infer the shape and pose of people from images. To train such models, a corpus of 3D body scans is typically brought into registration by aligning a common 3D human-shaped template to each scan. This is an ill-posed problem that typically involves solving an optimization problem with regularization terms that penalize implausible deformations of the template. When aligning a corpus, however, we can do better than generic regularization. If we have a model of how the template can deform then alignments can be regularized by this model. Constructing a model of deformations, however, requires having a corpus that is already registered. We address this chicken-and-egg problem by approaching modeling and registration together. By minimizing a single objective function, we reliably obtain high quality registration of noisy, incomplete, laser scans, while simultaneously learning a highly realistic articulated body model. The model greatly improves robustness to noise and missing data. Since the model explains a corpus of body scans, it captures how body shape varies across people and poses.

ps

pdf publisher site poster supplemental material (400MB) Project Page Project Page [BibTex]

pdf publisher site poster supplemental material (400MB) Project Page Project Page [BibTex]


Lie Bodies: A Manifold Representation of {3D} Human Shape. Supplemental Material
Lie Bodies: A Manifold Representation of 3D Human Shape. Supplemental Material

Freifeld, O., Black, M. J.

(No. 5), Max Planck Institute for Intelligent Systems, October 2012 (techreport)

ps

pdf Project Page [BibTex]

pdf Project Page [BibTex]


MPI-Sintel Optical Flow Benchmark: Supplemental Material
MPI-Sintel Optical Flow Benchmark: Supplemental Material

Butler, D. J., Wulff, J., Stanley, G. B., Black, M. J.

(No. 6), Max Planck Institute for Intelligent Systems, October 2012 (techreport)

ps

pdf Project Page [BibTex]

pdf Project Page [BibTex]


Lessons and insights from creating a synthetic optical flow benchmark
Lessons and insights from creating a synthetic optical flow benchmark

Wulff, J., Butler, D. J., Stanley, G. B., Black, M. J.

In ECCV Workshop on Unsolved Problems in Optical Flow and Stereo Estimation, pages: 168-177, Part II, LNCS 7584, (Editors: A. Fusiello et al. (Eds.)), Springer-Verlag, October 2012 (inproceedings)

ps

pdf dataset poster youtube Project Page [BibTex]

pdf dataset poster youtube Project Page [BibTex]


3D2PM {--} 3D Deformable Part Models
3D2PM – 3D Deformable Part Models

Pepik, B., Gehler, P., Stark, M., Schiele, B.

In Proceedings of the European Conference on Computer Vision (ECCV), pages: 356-370, Lecture Notes in Computer Science, (Editors: Fitzgibbon, Andrew W. and Lazebnik, Svetlana and Perona, Pietro and Sato, Yoichi and Schmid, Cordelia), Springer, Firenze, October 2012 (inproceedings)

ps

pdf video poster Project Page [BibTex]

pdf video poster Project Page [BibTex]


A naturalistic open source movie for optical flow evaluation
A naturalistic open source movie for optical flow evaluation

Butler, D. J., Wulff, J., Stanley, G. B., Black, M. J.

In European Conf. on Computer Vision (ECCV), pages: 611-625, Part IV, LNCS 7577, (Editors: A. Fitzgibbon et al. (Eds.)), Springer-Verlag, October 2012 (inproceedings)

Abstract
Ground truth optical flow is difficult to measure in real scenes with natural motion. As a result, optical flow data sets are restricted in terms of size, complexity, and diversity, making optical flow algorithms difficult to train and test on realistic data. We introduce a new optical flow data set derived from the open source 3D animated short film Sintel. This data set has important features not present in the popular Middlebury flow evaluation: long sequences, large motions, specular reflections, motion blur, defocus blur, and atmospheric effects. Because the graphics data that generated the movie is open source, we are able to render scenes under conditions of varying complexity to evaluate where existing flow algorithms fail. We evaluate several recent optical flow algorithms and find that current highly-ranked methods on the Middlebury evaluation have difficulty with this more complex data set suggesting further research on optical flow estimation is needed. To validate the use of synthetic data, we compare the image- and flow-statistics of Sintel to those of real films and videos and show that they are similar. The data set, metrics, and evaluation website are publicly available.

ps

pdf dataset youtube talk supplemental material Project Page Project Page [BibTex]

pdf dataset youtube talk supplemental material Project Page Project Page [BibTex]


Task-Based Grasp Adaptation on a Humanoid Robot
Task-Based Grasp Adaptation on a Humanoid Robot

Bohg, J., Welke, K., León, B., Do, M., Song, D., Wohlkinger, W., Aldoma, A., Madry, M., Przybylski, M., Asfour, T., Marti, H., Kragic, D., Morales, A., Vincze, M.

In 10th IFAC Symposium on Robot Control, SyRoCo 2012, Dubrovnik, Croatia, September 5-7, 2012., pages: 779-786, September 2012 (inproceedings)

Abstract
In this paper, we present an approach towards autonomous grasping of objects according to their category and a given task. Recent advances in the field of object segmentation and categorization as well as task-based grasp inference have been leveraged by integrating them into one pipeline. This allows us to transfer task-specific grasp experience between objects of the same category. The effectiveness of the approach is demonstrated on the humanoid robot ARMAR-IIIa.

am

Video pdf DOI [BibTex]

Video pdf DOI [BibTex]


A framework for relating neural activity to freely moving behavior
A framework for relating neural activity to freely moving behavior

Foster, J. D., Nuyujukian, P., Freifeld, O., Ryu, S., Black, M. J., Shenoy, K. V.

In 34th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC’12), pages: 2736 -2739 , IEEE, San Diego, August 2012 (inproceedings)

ps

pdf Project Page [BibTex]

pdf Project Page [BibTex]


Pottics {--} The Potts Topic Model for Semantic Image Segmentation
Pottics – The Potts Topic Model for Semantic Image Segmentation

Dann, C., Gehler, P., Roth, S., Nowozin, S.

In Proceedings of 34th DAGM Symposium, pages: 397-407, Lecture Notes in Computer Science, (Editors: Pinz, Axel and Pock, Thomas and Bischof, Horst and Leberl, Franz), Springer, August 2012 (inproceedings)

ps

code pdf poster [BibTex]

code pdf poster [BibTex]


no image
Influence Maximization in Continuous Time Diffusion Networks

Gomez Rodriguez, M., Schölkopf, B.

In Proceedings of the 29th International Conference on Machine Learning, pages: 313-320, (Editors: J, Langford and J, Pineau), Omnipress, New York, NY, USA, ICML, July 2012 (inproceedings)

ei

Web [BibTex]

Web [BibTex]


no image
Submodular Inference of Diffusion Networks from Multiple Trees

Gomez Rodriguez, M., Schölkopf, B.

In Proceedings of the 29th International Conference on Machine Learning , pages: 489-496, (Editors: J Langford, and J Pineau), Omnipress, New York, NY, USA, ICML, July 2012 (inproceedings)

ei

Web [BibTex]

Web [BibTex]


Quasi-Newton Methods: A New Direction
Quasi-Newton Methods: A New Direction

Hennig, P., Kiefel, M.

In Proceedings of the 29th International Conference on Machine Learning, pages: 25-32, ICML ’12, (Editors: John Langford and Joelle Pineau), Omnipress, New York, NY, USA, ICML, July 2012 (inproceedings)

Abstract
Four decades after their invention, quasi- Newton methods are still state of the art in unconstrained numerical optimization. Although not usually interpreted thus, these are learning algorithms that fit a local quadratic approximation to the objective function. We show that many, including the most popular, quasi-Newton methods can be interpreted as approximations of Bayesian linear regression under varying prior assumptions. This new notion elucidates some shortcomings of classical algorithms, and lights the way to a novel nonparametric quasi-Newton method, which is able to make more efficient use of available information at computational cost similar to its predecessors.

ei ps pn

website+code pdf link (url) [BibTex]

website+code pdf link (url) [BibTex]


no image
Image denoising: Can plain Neural Networks compete with BM3D?

Burger, H., Schuler, C., Harmeling, S.

In pages: 2392 - 2399, 25th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2012 (inproceedings)

Abstract
Image denoising can be described as the problem of mapping from a noisy image to a noise-free image. The best currently available denoising methods approximate this mapping with cleverly engineered algorithms. In this work we attempt to learn this mapping directly with a plain multi layer perceptron (MLP) applied to image patches. While this has been done before, we will show that by training on large image databases we are able to compete with the current state-of-the-art image denoising methods. Furthermore, our approach is easily adapted to less extensively studied types of noise (by merely exchanging the training data), for which we achieve excellent results as well.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Climate classifications: the value of unsupervised clustering

Zscheischler, J., Mahecha, M., Harmeling, S.

In Proceedings of the International Conference on Computational Science , 9, pages: 897-906, Procedia Computer Science, (Editors: H. Ali, Y. Shi, D. Khazanchi, M. Lees, G.D. van Albada, J. Dongarra, P.M.A. Sloot, J. Dongarra), Elsevier, Amsterdam, Netherlands, ICCS, June 2012 (inproceedings)

Abstract
Classifying the land surface according to di erent climate zones is often a prerequisite for global diagnostic or predictive modelling studies. Classical classifications such as the prominent K¨oppen–Geiger (KG) approach rely on heuristic decision rules. Although these heuristics may transport some process understanding, such a discretization may appear “arbitrary” from a data oriented perspective. In this contribution we compare the precision of a KG classification to an unsupervised classification (k-means clustering). Generally speaking, we revisit the problem of “climate classification” by investigating the inherent patterns in multiple data streams in a purely data driven way. One question is whether we can reproduce the KG boundaries by exploring di erent combinations of climate and remotely sensed vegetation variables. In this context we also investigate whether climate and vegetation variables build similar clusters. In terms of statistical performances, k-means clearly outperforms classical climate classifications. However, a subsequent stability analysis only reveals a meaningful number of clusters if both climate and vegetation data are considered in the analysis. This is a setback for the hope to explain vegetation by means of climate alone. Clearly, classification schemes like K¨oppen-Geiger will play an important role in the future. However, future developments in this area need to be assessed based on data driven approaches.

ei

Web DOI [BibTex]

Web DOI [BibTex]


From pictorial structures to deformable structures
From pictorial structures to deformable structures

Zuffi, S., Freifeld, O., Black, M. J.

In IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), pages: 3546-3553, IEEE, June 2012 (inproceedings)

Abstract
Pictorial Structures (PS) define a probabilistic model of 2D articulated objects in images. Typical PS models assume an object can be represented by a set of rigid parts connected with pairwise constraints that define the prior probability of part configurations. These models are widely used to represent non-rigid articulated objects such as humans and animals despite the fact that such objects have parts that deform non-rigidly. Here we define a new Deformable Structures (DS) model that is a natural extension of previous PS models and that captures the non-rigid shape deformation of the parts. Each part in a DS model is represented by a low-dimensional shape deformation space and pairwise potentials between parts capture how the shape varies with pose and the shape of neighboring parts. A key advantage of such a model is that it more accurately models object boundaries. This enables image likelihood models that are more discriminative than previous PS likelihoods. This likelihood is learned using training imagery annotated using a DS “puppet.” We focus on a human DS model learned from 2D projections of a realistic 3D human body model and use it to infer human poses in images using a form of non-parametric belief propagation.

ps

pdf sup mat code poster Project Page Project Page Project Page Project Page [BibTex]

pdf sup mat code poster Project Page Project Page Project Page Project Page [BibTex]


Teaching 3D Geometry to Deformable Part Models
Teaching 3D Geometry to Deformable Part Models

Pepik, B., Stark, M., Gehler, P., Schiele, B.

In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages: 3362 -3369, IEEE, Providence, RI, USA, June 2012, oral presentation (inproceedings)

ps

pdf DOI Project Page [BibTex]

pdf DOI Project Page [BibTex]