Header logo is


2014


Thumb xl modeltransport
Model transport: towards scalable transfer learning on manifolds - supplemental material

Freifeld, O., Hauberg, S., Black, M. J.

(9), April 2014 (techreport)

Abstract
This technical report is complementary to "Model Transport: Towards Scalable Transfer Learning on Manifolds" and contains proofs, explanation of the attached video (visualization of bases from the body shape experiments), and high-resolution images of select results of individual reconstructions from the shape experiments. It is identical to the supplemental mate- rial submitted to the Conference on Computer Vision and Pattern Recognition (CVPR 2014) on November 2013.

ps

PDF [BibTex]


no image
Single-Source Domain Adaptation with Target and Conditional Shift

Zhang, K., Schölkopf, B., Muandet, K., Wang, Z., Zhou, Z., Persello, C.

In Regularization, Optimization, Kernels, and Support Vector Machines, pages: 427-456, 19, Chapman & Hall/CRC Machine Learning & Pattern Recognition, (Editors: Suykens, J. A. K., Signoretto, M. and Argyriou, A.), Chapman and Hall/CRC, Boca Raton, USA, 2014 (inbook)

ei

[BibTex]

[BibTex]


no image
Higher-Order Tensors in Diffusion Imaging

Schultz, T., Fuster, A., Ghosh, A., Deriche, R., Florack, L., Lim, L.

In Visualization and Processing of Tensors and Higher Order Descriptors for Multi-Valued Data, pages: 129-161, Mathematics + Visualization, (Editors: Westin, C.-F., Vilanova, A. and Burgeth, B.), Springer, 2014 (inbook)

ei

[BibTex]

[BibTex]


no image
Fuzzy Fibers: Uncertainty in dMRI Tractography

Schultz, T., Vilanova, A., Brecheisen, R., Kindlmann, G.

In Scientific Visualization: Uncertainty, Multifield, Biomedical, and Scalable Visualization, pages: 79-92, 8, Mathematics + Visualization, (Editors: Hansen, C. D., Chen, M., Johnson, C. R., Kaufman, A. E. and Hagen, H.), Springer, 2014 (inbook)

ei

[BibTex]

[BibTex]


no image
Nonconvex Proximal Splitting with Computational Errors

Sra, S.

In Regularization, Optimization, Kernels, and Support Vector Machines, pages: 83-102, 4, (Editors: Suykens, J. A. K., Signoretto, M. and Argyriou, A.), CRC Press, 2014 (inbook)

ei

[BibTex]

[BibTex]


no image
Addressing of Micro-robot Teams and Non-contact Micro-manipulation

Diller, E., Ye, Z., Giltinan, J., Sitti, M.

In Small-Scale Robotics. From Nano-to-Millimeter-Sized Robotic Systems and Applications, pages: 28-38, Springer Berlin Heidelberg, 2014 (incollection)

pi

Project Page [BibTex]

Project Page [BibTex]


no image
Robot Learning by Guided Self-Organization

Martius, G., Der, R., Herrmann, J. M.

In Guided Self-Organization: Inception, 9, pages: 223-260, Emergence, Complexity and Computation, Springer Berlin Heidelberg, 2014 (incollection)

al

link (url) DOI [BibTex]

link (url) DOI [BibTex]


Thumb xl simulated annealing
Simulated Annealing

Gall, J.

In Encyclopedia of Computer Vision, pages: 737-741, 0, (Editors: Ikeuchi, K. ), Springer Verlag, 2014, to appear (inbook)

ps

[BibTex]

[BibTex]

2002


no image
Kernel Dependency Estimation

Weston, J., Chapelle, O., Elisseeff, A., Schölkopf, B., Vapnik, V.

(98), Max Planck Institute for Biological Cybernetics, August 2002 (techreport)

Abstract
We consider the learning problem of finding a dependency between a general class of objects and another, possibly different, general class of objects. The objects can be for example: vectors, images, strings, trees or graphs. Such a task is made possible by employing similarity measures in both input and output spaces using kernel functions, thus embedding the objects into vector spaces. Output kernels also make it possible to encode prior information and/or invariances in the loss function in an elegant way. We experimentally validate our approach on several tasks: mapping strings to strings, pattern recognition, and reconstruction from partial images.

ei

PDF [BibTex]

2002


PDF [BibTex]


no image
A compression approach to support vector model selection

von Luxburg, U., Bousquet, O., Schölkopf, B.

(101), Max Planck Institute for Biological Cybernetics, 2002, see more detailed JMLR version (techreport)

Abstract
In this paper we investigate connections between statistical learning theory and data compression on the basis of support vector machine (SVM) model selection. Inspired by several generalization bounds we construct ``compression coefficients'' for SVMs, which measure the amount by which the training labels can be compressed by some classification hypothesis. The main idea is to relate the coding precision of this hypothesis to the width of the margin of the SVM. The compression coefficients connect well known quantities such as the radius-margin ratio R^2/rho^2, the eigenvalues of the kernel matrix and the number of support vectors. To test whether they are useful in practice we ran model selection experiments on several real world datasets. As a result we found that compression coefficients can fairly accurately predict the parameters for which the test error is minimized.

ei

[BibTex]

[BibTex]


no image
Learning robot control

Schaal, S.

In The handbook of brain theory and neural networks, 2nd Edition, pages: 983-987, 2, (Editors: Arbib, M. A.), MIT Press, Cambridge, MA, 2002, clmc (inbook)

Abstract
This is a review article on learning control in robots.

am

link (url) [BibTex]

link (url) [BibTex]


no image
Arm and hand movement control

Schaal, S.

In The handbook of brain theory and neural networks, 2nd Edition, pages: 110-113, 2, (Editors: Arbib, M. A.), MIT Press, Cambridge, MA, 2002, clmc (inbook)

Abstract
This is a review article on computational and biological research on arm and hand control.

am

link (url) [BibTex]

link (url) [BibTex]


no image
Ion Channeling in Quasicrystals

Plachke, D., Carstanjen, H. D.

In Quasicrystals. An Introduction to Structure, Physical Properties and Applications, 55, pages: 280-304, Springer Series in Materials Science, Springer, Berlin [et al.], 2002 (incollection)

mms

[BibTex]

[BibTex]