Header logo is


2015


Thumb xl screen shot 2015 09 09 at 12.09.20
Untethered Magnetic Micromanipulation

Diller, E., Sitti, M.

In Micro-and Nanomanipulation Tools, 13, 10, Wiley-VCH Verlag GmbH & Co. KGaA, November 2015 (inbook)

Abstract
This chapter discusses the methods and state of the art in microscale manipulation in remote environments using untethered microrobotic devices. It focuses on manipulation at the size scale of tens to hundreds of microns, where small size leads to a dominance of microscale physical effects and challenges in fabrication and actuation. To motivate the challenges of operating at this size scale, the chapter includes coverage of the physical forces relevant to microrobot motion and manipulation below the millimeter-size scale. It then introduces the actuation methods commonly used in untethered manipulation schemes, with particular focus on magnetic actuation due to its wide use in the field. The chapter divides these manipulation techniques into two types: contact manipulation, which relies on direct pushing or grasping of objects for motion, and noncontact manipulation, which relies indirectly on induced fluid flow from the microrobot motion to move objects without any direct contact.

pi

DOI Project Page [BibTex]

2015


DOI Project Page [BibTex]


no image
easyGWAS: An Integrated Computational Framework for Advanced Genome-Wide Association Studies

Grimm, Dominik

Eberhard Karls Universität Tübingen, November 2015 (phdthesis)

ei

[BibTex]

[BibTex]


no image
Causal Discovery Beyond Conditional Independences

Sgouritsa, E.

Eberhard Karls Universität Tübingen, Germany, October 2015 (phdthesis)

ei

link (url) [BibTex]

link (url) [BibTex]


Thumb xl mt cover
Gaussian Process Optimization for Self-Tuning Control

Marco, A.

Polytechnic University of Catalonia (BarcelonaTech), October 2015 (mastersthesis)

am ics

PDF Project Page [BibTex]

PDF Project Page [BibTex]


no image
From Points to Probability Measures: A Statistical Learning on Distributions with Kernel Mean Embedding

Muandet, K.

University of Tübingen, Germany, University of Tübingen, Germany, September 2015 (phdthesis)

ei

[BibTex]

[BibTex]


no image
Machine Learning Approaches to Image Deconvolution

Schuler, C.

University of Tübingen, Germany, University of Tübingen, Germany, September 2015 (phdthesis)

ei

[BibTex]

[BibTex]


no image
Adaptive and Learning Concepts in Hydraulic Force Control

Doerr, A.

University of Stuttgart, September 2015 (mastersthesis)

am ics

[BibTex]

[BibTex]


no image
Kernel methods in medical imaging

Charpiat, G., Hofmann, M., Schölkopf, B.

In Handbook of Biomedical Imaging, pages: 63-81, 4, (Editors: Paragios, N., Duncan, J. and Ayache, N.), Springer, Berlin, Germany, June 2015 (inbook)

ei

Web link (url) [BibTex]

Web link (url) [BibTex]


Thumb xl thesis bild
Object Detection Using Deep Learning - Learning where to search using visual attention

Kloss, A.

Eberhard Karls Universität Tübingen, May 2015 (mastersthesis)

Abstract
Detecting and identifying the different objects in an image fast and reliably is an important skill for interacting with one’s environment. The main problem is that in theory, all parts of an image have to be searched for objects on many different scales to make sure that no object instance is missed. It however takes considerable time and effort to actually classify the content of a given image region and both time and computational capacities that an agent can spend on classification are limited. Humans use a process called visual attention to quickly decide which locations of an image need to be processed in detail and which can be ignored. This allows us to deal with the huge amount of visual information and to employ the capacities of our visual system efficiently. For computer vision, researchers have to deal with exactly the same problems, so learning from the behaviour of humans provides a promising way to improve existing algorithms. In the presented master’s thesis, a model is trained with eye tracking data recorded from 15 participants that were asked to search images for objects from three different categories. It uses a deep convolutional neural network to extract features from the input image that are then combined to form a saliency map. This map provides information about which image regions are interesting when searching for the given target object and can thus be used to reduce the parts of the image that have to be processed in detail. The method is based on a recent publication of Kümmerer et al., but in contrast to the original method that computes general, task independent saliency, the presented model is supposed to respond differently when searching for different target categories.

am

PDF Project Page [BibTex]


no image
Blind Retrospective Motion Correction of MR Images

Loktyushin, A.

University of Tübingen, Germany, May 2015 (phdthesis)

ei

[BibTex]

[BibTex]


Thumb xl picture for website
Robot Arm Tracking with Random Decision Forests

Widmaier, F.

Eberhard-Karls-Universität Tübingen, May 2015 (mastersthesis)

Abstract
For grasping and manipulation with robot arms, knowing the current pose of the arm is crucial for successful controlling its motion. Often, pose estimations can be acquired from encoders inside the arm, but they can have significant inaccuracy which makes the use of additional techniques necessary. In this master thesis, a novel approach of robot arm pose estimation is presented, that works on single depth images without the need of prior foreground segmentation or other preprocessing steps. A random regression forest is used, which is trained only on synthetically generated data. The approach improves former work by Bohg et al. by considerably reducing the computational effort both at training and test time. The forest in the new method directly estimates the desired joint angles while in the former approach, the forest casts 3D position votes for the joints, which then have to be clustered and fed into an iterative inverse kinematic process to finally get the joint angles. To improve the estimation accuracy, the standard training objective of the forest training is replaced by a specialized function that makes use of a model-dependent distance metric, called DISP. Experimental results show that the specialized objective indeed improves pose estimation and it is shown that the method, despite of being trained on synthetic data only, is able to provide reasonable estimations for real data at test time.

am

PDF Project Page [BibTex]

PDF Project Page [BibTex]


no image
Lernende Roboter

Trimpe, S.

In Jahrbuch der Max-Planck-Gesellschaft, Max Planck Society, May 2015, (popular science article in German) (inbook)

am ics

link (url) [BibTex]

link (url) [BibTex]


Thumb xl silvia phd
Shape Models of the Human Body for Distributed Inference

Zuffi, S.

Brown University, May 2015 (phdthesis)

Abstract
In this thesis we address the problem of building shape models of the human body, in 2D and 3D, which are realistic and efficient to use. We focus our efforts on the human body, which is highly articulated and has interesting shape variations, but the approaches we present here can be applied to generic deformable and articulated objects. To address efficiency, we constrain our models to be part-based and have a tree-structured representation with pairwise relationships between connected parts. This allows the application of methods for distributed inference based on message passing. To address realism, we exploit recent advances in computer graphics that represent the human body with statistical shape models learned from 3D scans. We introduce two articulated body models, a 2D model, named Deformable Structures (DS), which is a contour-based model parameterized for 2D pose and projected shape, and a 3D model, named Stitchable Puppet (SP), which is a mesh-based model parameterized for 3D pose, pose-dependent deformations and intrinsic body shape. We have successfully applied the models to interesting and challenging problems in computer vision and computer graphics, namely pose estimation from static images, pose estimation from video sequences, pose and shape estimation from 3D scan data. This advances the state of the art in human pose and shape estimation and suggests that carefully de ned realistic models can be important for computer vision. More work at the intersection of vision and graphics is thus encouraged.

ps

PDF [BibTex]


no image
Autonomous Robots

Schaal, S.

In Jahrbuch der Max-Planck-Gesellschaft, May 2015 (incollection)

am

[BibTex]

[BibTex]


Thumb xl th teaser
From Scans to Models: Registration of 3D Human Shapes Exploiting Texture Information

Bogo, F.

University of Padova, March 2015 (phdthesis)

Abstract
New scanning technologies are increasing the importance of 3D mesh data, and of algorithms that can reliably register meshes obtained from multiple scans. Surface registration is important e.g. for building full 3D models from partial scans, identifying and tracking objects in a 3D scene, creating statistical shape models. Human body registration is particularly important for many applications, ranging from biomedicine and robotics to the production of movies and video games; but obtaining accurate and reliable registrations is challenging, given the articulated, non-rigidly deformable structure of the human body. In this thesis, we tackle the problem of 3D human body registration. We start by analyzing the current state of the art, and find that: a) most registration techniques rely only on geometric information, which is ambiguous on flat surface areas; b) there is a lack of adequate datasets and benchmarks in the field. We address both issues. Our contribution is threefold. First, we present a model-based registration technique for human meshes that combines geometry and surface texture information to provide highly accurate mesh-to-mesh correspondences. Our approach estimates scene lighting and surface albedo, and uses the albedo to construct a high-resolution textured 3D body model that is brought into registration with multi-camera image data using a robust matching term. Second, by leveraging our technique, we present FAUST (Fine Alignment Using Scan Texture), a novel dataset collecting 300 high-resolution scans of 10 people in a wide range of poses. FAUST is the first dataset providing both real scans and automatically computed, reliable "ground-truth" correspondences between them. Third, we explore possible uses of our approach in dermatology. By combining our registration technique with a melanocytic lesion segmentation algorithm, we propose a system that automatically detects new or evolving lesions over almost the entire body surface, thus helping dermatologists identify potential melanomas. We conclude this thesis investigating the benefits of using texture information to establish frame-to-frame correspondences in dynamic monocular sequences captured with consumer depth cameras. We outline a novel approach to reconstruct realistic body shape and appearance models from dynamic human performances, and show preliminary results on challenging sequences captured with a Kinect.

ps

[BibTex]


Thumb xl thesis teaser
Long Range Motion Estimation and Applications

Sevilla-Lara, L.

Long Range Motion Estimation and Applications, University of Massachusetts Amherst, University of Massachusetts Amherst, Febuary 2015 (phdthesis)

Abstract
Finding correspondences between images underlies many computer vision problems, such as optical flow, tracking, stereovision and alignment. Finding these correspondences involves formulating a matching function and optimizing it. This optimization process is often gradient descent, which avoids exhaustive search, but relies on the assumption of being in the basin of attraction of the right local minimum. This is often the case when the displacement is small, and current methods obtain very accurate results for small motions. However, when the motion is large and the matching function is bumpy this assumption is less likely to be true. One traditional way of avoiding this abruptness is to smooth the matching function spatially by blurring the images. As the displacement becomes larger, the amount of blur required to smooth the matching function becomes also larger. This averaging of pixels leads to a loss of detail in the image. Therefore, there is a trade-off between the size of the objects that can be tracked and the displacement that can be captured. In this thesis we address the basic problem of increasing the size of the basin of attraction in a matching function. We use an image descriptor called distribution fields (DFs). By blurring the images in DF space instead of in pixel space, we in- crease the size of the basin attraction with respect to traditional methods. We show competitive results using DFs both in object tracking and optical flow. Finally we demonstrate an application of capturing large motions for temporal video stitching.

ps

[BibTex]

[BibTex]


no image
Policy Search for Imitation Learning

Doerr, A.

University of Stuttgart, January 2015 (thesis)

am ics

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


no image
A Cognitive Brain-Computer Interface for Patients with Amyotrophic Lateral Sclerosis

Hohmann, M.

Graduate Training Centre of Neuroscience, University of Tübingen, Germany, 2015 (mastersthesis)

ei

[BibTex]

[BibTex]


no image
Sequential Image Deconvolution Using Probabilistic Linear Algebra

Gao, M.

Technical University of Munich, Germany, 2015 (mastersthesis)

ei

[BibTex]

[BibTex]


no image
Causal Inference in Neuroimaging

Casarsa de Azevedo, L.

Graduate Training Centre of Neuroscience, University of Tübingen, Germany, 2015 (mastersthesis)

ei

[BibTex]

[BibTex]


no image
The effect of frowning on attention

Ibarra Chaoul, A.

Graduate Training Centre of Neuroscience, University of Tübingen, Germany, 2015 (mastersthesis)

ei

[BibTex]

[BibTex]


no image
Justifying Information-Geometric Causal Inference

Janzing, D., Steudel, B., Shajarisales, N., Schölkopf, B.

In Measures of Complexity: Festschrift for Alexey Chervonenkis, pages: 253-265, 18, (Editors: Vovk, V., Papadopoulos, H. and Gammerman, A.), Springer, 2015 (inbook)

ei

DOI [BibTex]

DOI [BibTex]


no image
Strukturelle und spektroskopische Eigenschaften epitaktischer FeMn/Co Exchange-Bias-Systeme

Schmidt, M.

Universität Stuttgart, Stuttgart, 2015 (phdthesis)

mms

link (url) DOI [BibTex]


no image
Ultraschnelles Vortexkernschalten

Noske, M.

Universität Stuttgart, Stuttgart (und Cuvillier Verlag, Göttingen), 2015 (phdthesis)

mms

[BibTex]

[BibTex]


no image
Investigations of unusual hard magnetic MnBi LTP phase, utilizing temperature dependent SQUID-FORC

Muralidhar, Shreyas

Universität Stuttgart, Stuttgart, 2015 (mastersthesis)

mms

[BibTex]

[BibTex]


no image
Magnetische Röntgenmikroskopie an Hochtemperatur-Supraleitern

Stahl, C.

Universität Stuttgart, Stuttgart (und Cuvillier Verlag, Göttingen), 2015 (phdthesis)

mms

[BibTex]

[BibTex]


no image
Voltage-induced magnetic manipulation of a microstructured iron gold multilayer system

Sittig, Robert

Universität Stuttgart, Stuttgart, 2015 (mastersthesis)

mms

[BibTex]

[BibTex]


no image
Transfer of angular momentum from the spin system to the lattice during ultrafast magnetization

Tsatsoulis, T.

Universität Stuttgart, Stuttgart, 2015 (mastersthesis)

mms

[BibTex]

[BibTex]


no image
Robot Learning

Peters, J., Lee, D., Kober, J., Nguyen-Tuong, D., Bagnell, J. A., Schaal, S.

In Springer Handbook of Robotics 2nd Edition, pages: 1371-1394, Springer Berlin Heidelberg, Berlin, Heidelberg, 2015 (incollection)

am

[BibTex]

[BibTex]


no image
Quantum kinetic theory of ultrafast demagnetization by electron-phonon scattering

Briones Paz, J. Z.

Universität Stuttgart, Stuttgart, 2015 (mastersthesis)

mms

[BibTex]

[BibTex]

1993


no image
Learning passive motor control strategies with genetic algorithms

Schaal, S., Sternad, D.

In 1992 Lectures in complex systems, pages: 913-918, (Editors: Nadel, L.;Stein, D.), Addison-Wesley, Redwood City, CA, 1993, clmc (inbook)

Abstract
This study investigates learning passive motor control strategies. Passive control is understood as control without active error correction; the movement is stabilized by particular properties of the controlling dynamics. We analyze the task of juggling a ball on a racket. An approximation to the optimal solution of the task is derived by means of optimization theory. In order to model the learning process, the problem is coded for a genetic algorithm in representations without sensory or with sensory information. For all representations the genetic algorithm is able to find passive control strategies, but learning speed and the quality of the outcome are significantly different. A comparison with data from human subjects shows that humans seem to apply yet different movement strategies to the ones proposed. For the feedback representation some implications arise for learning from demonstration.

am

link (url) [BibTex]

1993


link (url) [BibTex]


no image
A genetic algorithm for evolution from an ecological perspective

Sternad, D., Schaal, S.

In 1992 Lectures in Complex Systems, pages: 223-231, (Editors: Nadel, L.;Stein, D.), Addison-Wesley, Redwood City, CA, 1993, clmc (inbook)

Abstract
In the population model presented, an evolutionary dynamic is explored which is based on the operator characteristics of genetic algorithms. An essential modification in the genetic algorithms is the inclusion of a constraint in the mixing of the gene pool. The pairing for the crossover is governed by a selection principle based on a complementarity criterion derived from the theoretical tenet of perception-action (P-A) mutuality of ecological psychology. According to Swenson and Turvey [37] P-A mutuality underlies evolution and is an integral part of its thermodynamics. The present simulation tested the contribution of P-A-cycles in evolutionary dynamics. A numerical experiment compares the population's evolution with and without this intentional component. The effect is measured in the difference of the rate of energy dissipation, as well as in three operationalized aspects of complexity. The results support the predicted increase in the rate of energy dissipation, paralleled by an increase in the average heterogeneity of the population. Furthermore, the spatio-temporal evolution of the system is tested for the characteristic power-law relations of a nonlinear system poised in a critical state. The frequency distribution of consecutive increases in population size shows a significantly different exponent in functional relationship.

am

[BibTex]

[BibTex]