Header logo is


2013


no image
A Review of Performance Variations in SMR-Based Brain–Computer Interfaces (BCIs)

Grosse-Wentrup, M., Schölkopf, B.

In Brain-Computer Interface Research, pages: 39-51, 4, SpringerBriefs in Electrical and Computer Engineering, (Editors: Guger, C., Allison, B. Z. and Edlinger, G.), Springer, 2013 (inbook)

ei

PDF DOI [BibTex]

2013


PDF DOI [BibTex]


no image
Semi-supervised learning in causal and anticausal settings

Schölkopf, B., Janzing, D., Peters, J., Sgouritsa, E., Zhang, K., Mooij, J.

In Empirical Inference, pages: 129-141, 13, Festschrift in Honor of Vladimir Vapnik, (Editors: Schölkopf, B., Luo, Z. and Vovk, V.), Springer, 2013 (inbook)

ei

DOI [BibTex]

DOI [BibTex]


no image
Tractable large-scale optimization in machine learning

Sra, S.

In Tractability: Practical Approaches to Hard Problems, pages: 202-230, 7, (Editors: Bordeaux, L., Hamadi , Y., Kohli, P. and Mateescu, R. ), Cambridge University Press , 2013 (inbook)

ei

[BibTex]

[BibTex]


no image
On the Relations and Differences between Popper Dimension, Exclusion Dimension and VC-Dimension

Seldin, Y., Schölkopf, B.

In Empirical Inference - Festschrift in Honor of Vladimir N. Vapnik, pages: 53-57, 6, (Editors: Schölkopf, B., Luo, Z. and Vovk, V.), Springer, 2013 (inbook)

ei

[BibTex]

[BibTex]


no image
Behavior as broken symmetry in embodied self-organizing robots

Der, R., Martius, G.

In Advances in Artificial Life, ECAL 2013, pages: 601-608, MIT Press, 2013 (incollection)

al

[BibTex]

[BibTex]


no image
Using Torque Redundancy to Optimize Contact Forces in Legged Robots

Righetti, L., Buchli, J., Mistry, M., Kalakrishnan, M., Schaal, S.

In Redundancy in Robot Manipulators and Multi-Robot Systems, 57, pages: 35-51, Lecture Notes in Electrical Engineering, Springer Berlin Heidelberg, 2013 (incollection)

Abstract
The development of legged robots for complex environments requires controllers that guarantee both high tracking performance and compliance with the environment. More specifically the control of contact interaction with the environment is of crucial importance to ensure stable, robust and safe motions. In the following, we present an inverse dynamics controller that exploits torque redundancy to directly and explicitly minimize any combination of linear and quadratic costs in the contact constraints and in the commands. Such a result is particularly relevant for legged robots as it allows to use torque redundancy to directly optimize contact interactions. For example, given a desired locomotion behavior, it can guarantee the minimization of contact forces to reduce slipping on difficult terrains while ensuring high tracking performance of the desired motion. The proposed controller is very simple and computationally efficient, and most importantly it can greatly improve the performance of legged locomotion on difficult terrains as can be seen in the experimental results.

am mg

link (url) [BibTex]

link (url) [BibTex]


Thumb xl houghforest
Class-Specific Hough Forests for Object Detection

Gall, J., Lempitsky, V.

In Decision Forests for Computer Vision and Medical Image Analysis, pages: 143-157, 11, (Editors: Criminisi, A. and Shotton, J.), Springer, 2013 (incollection)

ps

code Project Page [BibTex]

code Project Page [BibTex]

2001


no image
Influence of grain boundary phase transitions on the properties of Cu-Bi polycrystals

Straumal, B. B., Sluchanko, N.E., Gust, W.

In Defects and Diffusion in Metals III: An Annual Retrospective III, 188-1, pages: 185-194, Defect and Diffusion Forum, 2001 (incollection)

mms

[BibTex]

2001


[BibTex]

1999


no image
Nonparametric regression for learning nonlinear transformations

Schaal, S.

In Prerational Intelligence in Strategies, High-Level Processes and Collective Behavior, 2, pages: 595-621, (Editors: Ritter, H.;Cruse, H.;Dean, J.), Kluwer Academic Publishers, 1999, clmc (inbook)

Abstract
Information processing in animals and artificial movement systems consists of a series of transformations that map sensory signals to intermediate representations, and finally to motor commands. Given the physical and neuroanatomical differences between individuals and the need for plasticity during development, it is highly likely that such transformations are learned rather than pre-programmed by evolution. Such self-organizing processes, capable of discovering nonlinear dependencies between different groups of signals, are one essential part of prerational intelligence. While neural network algorithms seem to be the natural choice when searching for solutions for learning transformations, this paper will take a more careful look at which types of neural networks are actually suited for the requirements of an autonomous learning system. The approach that we will pursue is guided by recent developments in learning theory that have linked neural network learning to well established statistical theories. In particular, this new statistical understanding has given rise to the development of neural network systems that are directly based on statistical methods. One family of such methods stems from nonparametric regression. This paper will compare nonparametric learning with the more widely used parametric counterparts in a non technical fashion, and investigate how these two families differ in their properties and their applicabilities. We will argue that nonparametric neural networks offer a set of characteristics that make them a very promising candidate for on-line learning in autonomous system.

am

link (url) [BibTex]

1999


link (url) [BibTex]

1991


no image
Ways to smarter CAD-systems

Ehrlenspiel, K., Schaal, S.

In Proceedings of ICED’91Heurista, pages: 10-16, (Editors: Hubka), Edition, Schriftenreihe WDK 21. Zürich, 1991, clmc (inbook)

am

[BibTex]

1991


[BibTex]