Header logo is


2002


no image
Learning robot control

Schaal, S.

In The handbook of brain theory and neural networks, 2nd Edition, pages: 983-987, 2, (Editors: Arbib, M. A.), MIT Press, Cambridge, MA, 2002, clmc (inbook)

Abstract
This is a review article on learning control in robots.

am

link (url) [BibTex]

2002


link (url) [BibTex]


no image
Arm and hand movement control

Schaal, S.

In The handbook of brain theory and neural networks, 2nd Edition, pages: 110-113, 2, (Editors: Arbib, M. A.), MIT Press, Cambridge, MA, 2002, clmc (inbook)

Abstract
This is a review article on computational and biological research on arm and hand control.

am

link (url) [BibTex]

link (url) [BibTex]


no image
Ion Channeling in Quasicrystals

Plachke, D., Carstanjen, H. D.

In Quasicrystals. An Introduction to Structure, Physical Properties and Applications, 55, pages: 280-304, Springer Series in Materials Science, Springer, Berlin [et al.], 2002 (incollection)

mms

[BibTex]

[BibTex]

2000


no image
An Introduction to Kernel-Based Learning Algorithms

Müller, K., Mika, S., Rätsch, G., Tsuda, K., Schölkopf, B.

In Handbook of Neural Network Signal Processing, 4, (Editors: Yu Hen Hu and Jang-Neng Hwang), CRC Press, 2000 (inbook)

ei

[BibTex]

2000


[BibTex]


no image
Biomimetic gaze stabilization

Shibata, T., Schaal, S.

In Robot learning: an Interdisciplinary approach, pages: 31-52, (Editors: Demiris, J.;Birk, A.), World Scientific, 2000, clmc (inbook)

Abstract
Accurate oculomotor control is one of the essential pre-requisites for successful visuomotor coordination. In this paper, we suggest a biologically inspired control system for learning gaze stabilization with a biomimetic robotic oculomotor system. In a stepwise fashion, we develop a control circuit for the vestibulo-ocular reflex (VOR) and the opto-kinetic response (OKR), and add a nonlinear learning network to allow adaptivity. We discuss the parallels and differences of our system with biological oculomotor control and suggest solutions how to deal with nonlinearities and time delays in the control system. In simulation and actual robot studies, we demonstrate that our system can learn gaze stabilization in real time in only a few seconds with high final accuracy.

am

link (url) [BibTex]

link (url) [BibTex]


no image
Age-momentum correlation (AMOC)

Stoll, H.

In Construction and Use of an Intense Positron Source at new Linac Facilities in Germany, FZR-295, pages: 44-49, Wissenschaftlich-Technische Berichte, 2000 (incollection)

mms

[BibTex]

[BibTex]


no image
MeV Positron Beams

Stoll, H.

In Positron Beams and Their Applications, pages: 237-257, World Scientific, Singapore, 2000 (incollection)

mms

[BibTex]

[BibTex]


no image
Critical behaviour of V2H in a defective near-surface skin layer

Trenkler, J., Moss, S. C., Reichert, H., Paniago, R., Gebhardt, U., Carstanjen, H. D., Metzger, T. H., Peisl, J.

In Exploration of Subsurface Phenomena by Particle Scattering, pages: 155-164, International Advanced Studies Institute IASI Press, North East/MD, 2000 (incollection)

mms

[BibTex]

[BibTex]

1993


no image
Learning passive motor control strategies with genetic algorithms

Schaal, S., Sternad, D.

In 1992 Lectures in complex systems, pages: 913-918, (Editors: Nadel, L.;Stein, D.), Addison-Wesley, Redwood City, CA, 1993, clmc (inbook)

Abstract
This study investigates learning passive motor control strategies. Passive control is understood as control without active error correction; the movement is stabilized by particular properties of the controlling dynamics. We analyze the task of juggling a ball on a racket. An approximation to the optimal solution of the task is derived by means of optimization theory. In order to model the learning process, the problem is coded for a genetic algorithm in representations without sensory or with sensory information. For all representations the genetic algorithm is able to find passive control strategies, but learning speed and the quality of the outcome are significantly different. A comparison with data from human subjects shows that humans seem to apply yet different movement strategies to the ones proposed. For the feedback representation some implications arise for learning from demonstration.

am

link (url) [BibTex]

1993


link (url) [BibTex]


no image
A genetic algorithm for evolution from an ecological perspective

Sternad, D., Schaal, S.

In 1992 Lectures in Complex Systems, pages: 223-231, (Editors: Nadel, L.;Stein, D.), Addison-Wesley, Redwood City, CA, 1993, clmc (inbook)

Abstract
In the population model presented, an evolutionary dynamic is explored which is based on the operator characteristics of genetic algorithms. An essential modification in the genetic algorithms is the inclusion of a constraint in the mixing of the gene pool. The pairing for the crossover is governed by a selection principle based on a complementarity criterion derived from the theoretical tenet of perception-action (P-A) mutuality of ecological psychology. According to Swenson and Turvey [37] P-A mutuality underlies evolution and is an integral part of its thermodynamics. The present simulation tested the contribution of P-A-cycles in evolutionary dynamics. A numerical experiment compares the population's evolution with and without this intentional component. The effect is measured in the difference of the rate of energy dissipation, as well as in three operationalized aspects of complexity. The results support the predicted increase in the rate of energy dissipation, paralleled by an increase in the average heterogeneity of the population. Furthermore, the spatio-temporal evolution of the system is tested for the characteristic power-law relations of a nonlinear system poised in a critical state. The frequency distribution of consecutive increases in population size shows a significantly different exponent in functional relationship.

am

[BibTex]

[BibTex]