Header logo is


2015


no image
Learning robots

Trimpe, S.

2015 (mpi_year_book)

Abstract
An exploded power plant, collapsed buildings after an earthquake, a burning vehicle loaded with hazardous goods – all of these are dangerous situations for human emergency responders. What if we could send robots instead of humans? Researchers at the Autonomous Motion Department work on fundamental principles required to build intelligent robots which one day can help us in dangerous situations. A key requirement for making this happen is that robots must be enabled to learn.

link (url) [BibTex]

2015



no image
The smallest human-made nano-motor

Sánchez, Samuel

2015 (mpi_year_book)

Abstract
Tiny self-propelled motors which speed through the water and clean up pollutions along the way or small robots which can swim effortlessly through blood to one day transport medication to a certain part of the body – this sounds like taken from a science fiction movie script. However, Samuel Sánchez is already hard at work in his lab at the Max Planck Institute for Intelligent Systems in Stuttgart to make these visions come true. Self-propelled micro-nanorobots and the usage as integrated sensors in microfluid-chips: that’s the topic of Sánchez` research group.

link (url) [BibTex]

link (url) [BibTex]


no image
Derivation of phenomenological expressions for transition matrix elements for electron-phonon scattering

Illg, C., Haag, M., Müller, B. Y., Czycholl, G., Fähnle, M.

2015 (misc)

mms

link (url) [BibTex]

2011


no image
Preparation of high-efficiency nanostructures of crystalline silicon at low temperatures, as catalyzed by metals: The decisive role of interface thermodynamics

Wang, Zumin, Jeurgens, Lars P. H., Mittemeijer, Eric J.

2011 (mpi_year_book)

Abstract
Metals may help to convert semiconductors from a disordered (amorphous) to an ordered (crystalline) form at low temperatures. A general, quantitative model description has been developed on the basis of interface thermodynamics, which provides fundamental understanding of such so-called metal-induced crystallization (MIC) of amorphous semiconductors. This fundamental understanding can allow the low-temperature (< 200 ºC) manufacturing of high-efficiency solar cells and crystalline-Si-based nanostructures on cheap and flexible substrates such as glasses, plastics and possibly even papers.

link (url) [BibTex]


no image
The sweet coat of living cells – from supramolecular organization and dynamics to biological function

Richter, Ralf

2011 (mpi_year_book)

Abstract
Many biological cells endow themselves with a sugar-rich coat that plays a key role in the protection of the cell and in structuring and communicating with its environment. An outstanding property of these pericellular coats is their dynamic self-organization into strongly hydrated and gel-like meshworks. Tailor-made model systems that are constructed from the molecular building blocks of pericellular coats can help to understand how the coats function.

link (url) [BibTex]

2004


no image
Statistische Lerntheorie und Empirische Inferenz

Schölkopf, B.

Jahrbuch der Max-Planck-Gesellschaft, 2004, pages: 377-382, 2004 (misc)

Abstract
Statistical learning theory studies the process of inferring regularities from empirical data. The fundamental problem is what is called generalization: how it is possible to infer a law which will be valid for an infinite number of future observations, given only a finite amount of data? This problem hinges upon fundamental issues of statistics and science in general, such as the problems of complexity of explanations, a priori knowledge, and representation of data.

ei

PDF Web [BibTex]

2004


PDF Web [BibTex]


no image
Nanoscale Materials for Energy Storage
{Materials Science \& Engineering B}, 108, pages: 292, Elsevier, 2004 (misc)

mms

[BibTex]

[BibTex]