Header logo is


2020


Learning to Predict Perceptual Distributions of Haptic Adjectives
Learning to Predict Perceptual Distributions of Haptic Adjectives

Richardson, B. A., Kuchenbecker, K. J.

Frontiers in Neurorobotics, 13(116):1-16, Febuary 2020 (article)

Abstract
When humans touch an object with their fingertips, they can immediately describe its tactile properties using haptic adjectives, such as hardness and roughness; however, human perception is subjective and noisy, with significant variation across individuals and interactions. Recent research has worked to provide robots with similar haptic intelligence but was focused on identifying binary haptic adjectives, ignoring both attribute intensity and perceptual variability. Combining ordinal haptic adjective labels gathered from human subjects for a set of 60 objects with features automatically extracted from raw multi-modal tactile data collected by a robot repeatedly touching the same objects, we designed a machine-learning method that incorporates partial knowledge of the distribution of object labels into training; then, from a single interaction, it predicts a probability distribution over the set of ordinal labels. In addition to analyzing the collected labels (10 basic haptic adjectives) and demonstrating the quality of our method's predictions, we hold out specific features to determine the influence of individual sensor modalities on the predictive performance for each adjective. Our results demonstrate the feasibility of modeling both the intensity and the variation of haptic perception, two crucial yet previously neglected components of human haptic perception.

hi

DOI [BibTex]

2020


DOI [BibTex]


no image
Sliding Mode Control with Gaussian Process Regression for Underwater Robots

Lima, G. S., Trimpe, S., Bessa, W. M.

Journal of Intelligent & Robotic Systems, January 2020 (article)

ics

DOI [BibTex]

DOI [BibTex]


Hierarchical Event-triggered Learning for Cyclically Excited Systems with Application to Wireless Sensor Networks
Hierarchical Event-triggered Learning for Cyclically Excited Systems with Application to Wireless Sensor Networks

Beuchert, J., Solowjow, F., Raisch, J., Trimpe, S., Seel, T.

IEEE Control Systems Letters, 4(1):103-108, January 2020 (article)

ics

arXiv PDF DOI Project Page [BibTex]

arXiv PDF DOI Project Page [BibTex]


Learning Multi-Human Optical Flow
Learning Multi-Human Optical Flow

Ranjan, A., Hoffmann, D. T., Tzionas, D., Tang, S., Romero, J., Black, M. J.

International Journal of Computer Vision (IJCV), January 2020 (article)

Abstract
The optical flow of humans is well known to be useful for the analysis of human action. Recent optical flow methods focus on training deep networks to approach the problem. However, the training data used by them does not cover the domain of human motion. Therefore, we develop a dataset of multi-human optical flow and train optical flow networks on this dataset. We use a 3D model of the human body and motion capture data to synthesize realistic flow fields in both single-and multi-person images. We then train optical flow networks to estimate human flow fields from pairs of images. We demonstrate that our trained networks are more accurate than a wide range of top methods on held-out test data and that they can generalize well to real image sequences. The code, trained models and the dataset are available for research.

ps

Paper Publisher Version poster link (url) DOI [BibTex]


Control-guided Communication: Efficient Resource Arbitration and Allocation in Multi-hop Wireless Control Systems
Control-guided Communication: Efficient Resource Arbitration and Allocation in Multi-hop Wireless Control Systems

Baumann, D., Mager, F., Zimmerling, M., Trimpe, S.

IEEE Control Systems Letters, 4(1):127-132, January 2020 (article)

ics

arXiv PDF DOI [BibTex]

arXiv PDF DOI [BibTex]


no image
Self-supervised motion deblurring

Liu, P., Janai, J., Pollefeys, M., Sattler, T., Geiger, A.

IEEE Robotics and Automation Letters, 2020 (article)

avg

[BibTex]

[BibTex]


no image
Effect of the soft layer thickness of magnetization reversal process of exchange-spring nanomagnet patterns

Son, K., Schütz, G., Goering, E.

{Current Applied Physics}, 20(4):477-483, Elsevier B.V., Amsterdam, 2020 (article)

mms

DOI [BibTex]


no image
Tuning the magnetic properties of permalloy-based magnetoplasmonic crystals for sensor applications

Murzin, D. V., Belyaev, V. K., Groß, F., Gräfe, J., Rivas, M., Rodionova, V. V.

{Japanese Journal of Applied Physics}, 59(SE), IOP Publishing Ltd, Bristol, England, 2020 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Element-resolved study of the evolution of magnetic response in FexN compounds

Chen, Y., Gölden, D., Dirba, I., Huang, M., Gutfleisch, O., Nagel, P., Merz, M., Schuppler, S., Schütz, G., Alff, L., Goering, E.

{Journal of Magnetism and Magnetic Materials}, 498, NH, Elsevier, Amsterdam, 2020 (article)

mms

DOI [BibTex]

DOI [BibTex]


Controlling two-dimensional collective formation and cooperative behavior of magnetic microrobot swarms
Controlling two-dimensional collective formation and cooperative behavior of magnetic microrobot swarms

Dong, X., Sitti, M.

The International Journal of Robotics Research, 2020 (article)

Abstract
Magnetically actuated mobile microrobots can access distant, enclosed, and small spaces, such as inside microfluidic channels and the human body, making them appealing for minimally invasive tasks. Despite their simplicity when scaling down, creating collective microrobots that can work closely and cooperatively, as well as reconfigure their formations for different tasks, would significantly enhance their capabilities such as manipulation of objects. However, a challenge of realizing such cooperative magnetic microrobots is to program and reconfigure their formations and collective motions with under-actuated control signals. This article presents a method of controlling 2D static and time-varying formations among collective self-repelling ferromagnetic microrobots (100 μm to 350 μm in diameter, up to 260 in number) by spatially and temporally programming an external magnetic potential energy distribution at the air–water interface or on solid surfaces. A general design method is introduced to program external magnetic potential energy using ferromagnets. A predictive model of the collective system is also presented to predict the formation and guide the design procedure. With the proposed method, versatile complex static formations are experimentally demonstrated and the programmability and scaling effects of formations are analyzed. We also demonstrate the collective mobility of these magnetic microrobots by controlling them to exhibit bio-inspired collective behaviors such as aggregation, directional motion with arbitrary swarm headings, and rotational swarming motion. Finally, the functions of the produced microrobotic swarm are demonstrated by controlling them to navigate through cluttered environments and complete reconfigurable cooperative manipulation tasks.

pi

DOI [BibTex]


no image
The role of temperature and drive current in skyrmion dynamics

Litzius, K., Leliaert, J., Bassirian, P., Rodrigues, D., Kromin, S., Lemesh, I., Zazvorka, J., Lee, K., Mulkers, J., Kerber, N., Heinze, D., Keil, N., Reeve, R. M., Weigand, M., Van Waeyenberge, B., Schütz, G., Everschor-Sitte, K., Beach, G. S. D., Kläui, M.

{Nature Electronics}, 3(1):30-36, Springer Nature, London, 2020 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Magnetic flux penetration into micron-sized superconductor/ferromagnet bilayers

Simmendinger, J., Weigand, M., Schütz, G., Albrecht, J.

{Superconductor Science and Technology}, 33(2), IOP Pub., Bristol, 2020 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Analytical classical density functionals from an equation learning network

Lin, S., Martius, G., Oettel, M.

The Journal of Chemical Physics, 152(2):021102, 2020, arXiv preprint \url{https://arxiv.org/abs/1910.12752} (article)

al

Preprint_PDF DOI [BibTex]

Preprint_PDF DOI [BibTex]


no image
Fabrication and temperature-dependent magnetic properties of large-area L10-FePt/Co exchange-spring magnet nanopatterns

Son, K., Schütz, G.

{Physica E: Low-Dimensional Systems And Nanostructures}, 115, North-Holland, Amsterdam, 2020 (article)

mms

DOI [BibTex]

DOI [BibTex]


General Movement Assessment from videos of computed {3D} infant body models is equally effective compared to conventional {RGB} Video rating
General Movement Assessment from videos of computed 3D infant body models is equally effective compared to conventional RGB Video rating

Schroeder, S., Hesse, N., Weinberger, R., Tacke, U., Gerstl, L., Hilgendorff, A., Heinen, F., Arens, M., Bodensteiner, C., Dijkstra, L. J., Pujades, S., Black, M., Hadders-Algra, M.

Early Human Development, 2020 (article)

Abstract
Background: General Movement Assessment (GMA) is a powerful tool to predict Cerebral Palsy (CP). Yet, GMA requires substantial training hampering its implementation in clinical routine. This inspired a world-wide quest for automated GMA. Aim: To test whether a low-cost, marker-less system for three-dimensional motion capture from RGB depth sequences using a whole body infant model may serve as the basis for automated GMA. Study design: Clinical case study at an academic neurodevelopmental outpatient clinic. Subjects: Twenty-nine high-risk infants were recruited and assessed at their clinical follow-up at 2-4 month corrected age (CA). Their neurodevelopmental outcome was assessed regularly up to 12-31 months CA. Outcome measures: GMA according to Hadders-Algra by a masked GMA-expert of conventional and computed 3D body model (“SMIL motion”) videos of the same GMs. Agreement between both GMAs was assessed, and sensitivity and specificity of both methods to predict CP at ≥12 months CA. Results: The agreement of the two GMA ratings was substantial, with κ=0.66 for the classification of definitely abnormal (DA) GMs and an ICC of 0.887 (95% CI 0.762;0.947) for a more detailed GM-scoring. Five children were diagnosed with CP (four bilateral, one unilateral CP). The GMs of the child with unilateral CP were twice rated as mildly abnormal. DA-ratings of both videos predicted bilateral CP well: sensitivity 75% and 100%, specificity 88% and 92% for conventional and SMIL motion videos, respectively. Conclusions: Our computed infant 3D full body model is an attractive starting point for automated GMA in infants at risk of CP.

ps

[BibTex]

[BibTex]


Spatial Scheduling of Informative Meetings for Multi-Agent Persistent Coverage
Spatial Scheduling of Informative Meetings for Multi-Agent Persistent Coverage

Haksar, R. N., Trimpe, S., Schwager, M.

IEEE Robotics and Automation Letters, 2020 (article) Accepted

ics

[BibTex]

[BibTex]


no image
Visual-Inertial Mapping with Non-Linear Factor Recovery

Usenko, V., Demmel, N., Schubert, D., Stückler, J., Cremers, D.

IEEE Robotics and Automation Letters (RA-L), 5, 2020, accepted for presentation at IEEE International Conference on Robotics and Automation (ICRA) 2020, to appear, arXiv:1904.06504 (article)

Abstract
Cameras and inertial measurement units are complementary sensors for ego-motion estimation and environment mapping. Their combination makes visual-inertial odometry (VIO) systems more accurate and robust. For globally consistent mapping, however, combining visual and inertial information is not straightforward. To estimate the motion and geometry with a set of images large baselines are required. Because of that, most systems operate on keyframes that have large time intervals between each other. Inertial data on the other hand quickly degrades with the duration of the intervals and after several seconds of integration, it typically contains only little useful information. In this paper, we propose to extract relevant information for visual-inertial mapping from visual-inertial odometry using non-linear factor recovery. We reconstruct a set of non-linear factors that make an optimal approximation of the information on the trajectory accumulated by VIO. To obtain a globally consistent map we combine these factors with loop-closing constraints using bundle adjustment. The VIO factors make the roll and pitch angles of the global map observable, and improve the robustness and the accuracy of the mapping. In experiments on a public benchmark, we demonstrate superior performance of our method over the state-of-the-art approaches.

ev

[BibTex]

[BibTex]


Trunk pitch oscillations for energy trade-offs in bipedal running birds and robots
Trunk pitch oscillations for energy trade-offs in bipedal running birds and robots

Oezge Drama, , Badri-Spröwitz, A.

Bioinspiration & Biomimetics, 2020 (article)

Abstract
Bipedal animals have diverse morphologies and advanced locomotion abilities. Terrestrial birds, in particular, display agile, efficient, and robust running motion, in which they exploit the interplay between the body segment masses and moment of inertias. On the other hand, most legged robots are not able to generate such versatile and energy-efficient motion and often disregard trunk movements as a means to enhance their locomotion capabilities. Recent research investigated how trunk motions affect the gait characteristics of humans, but there is a lack of analysis across different bipedal morphologies. To address this issue, we analyze avian running based on a spring-loaded inverted pendulum model with a pronograde (horizontal) trunk. We use a virtual point based control scheme and modify the alignment of the ground reaction forces to assess how our control strategy influences the trunk pitch oscillations and energetics of the locomotion. We derive three potential key strategies to leverage trunk pitch motions that minimize either the energy fluctuations of the center of mass or the work performed by the hip and leg. We suggest how these strategies could be used in legged robotics.

dlg

link (url) DOI [BibTex]


Safe and Fast Tracking Control on a Robot Manipulator: Robust MPC and Neural Network Control
Safe and Fast Tracking Control on a Robot Manipulator: Robust MPC and Neural Network Control

Nubert, J., Koehler, J., Berenz, V., Allgower, F., Trimpe, S.

IEEE Robotics and Automation Letters, 2020 (article) Accepted

am ics

arXiv PDF [BibTex]

arXiv PDF [BibTex]


no image
Thermal nucleation and high-resolution imaging of submicrometer magnetic bubbles in thin thulium iron garnet films with perpendicular anisotropy

Büttner, F., Mawass, M. A., Bauer, J., Rosenberg, E., Caretta, L., Avci, C. O., Gräfe, J., Finizio, S., Vaz, C. A. F., Novakovic, N., Weigand, M., Litzius, K., Förster, J., Träger, N., Groß, F., Suzuki, D., Huang, M., Bartell, J., Kronast, F., Raabe, J., Schütz, G., Ross, C. A., Beach, G. S. D.

{Physical Review Materials}, 4(1), American Physical Society, College Park, MD, 2020 (article)

mms

DOI [BibTex]

DOI [BibTex]

2008


no image
Modelling contrast discrimination data suggest both the pedestal effect and stochastic resonance to be caused by the same mechanism

Goris, R., Wagemans, J., Wichmann, F.

Journal of Vision, 8(15):1-21, November 2008 (article)

Abstract
Computational models of spatial vision typically make use of a (rectified) linear filter, a nonlinearity and dominant late noise to account for human contrast discrimination data. Linear–nonlinear cascade models predict an improvement in observers' contrast detection performance when low, subthreshold levels of external noise are added (i.e., stochastic resonance). Here, we address the issue whether a single contrast gain-control model of early spatial vision can account for both the pedestal effect, i.e., the improved detectability of a grating in the presence of a low-contrast masking grating, and stochastic resonance. We measured contrast discrimination performance without noise and in both weak and moderate levels of noise. Making use of a full quantitative description of our data with few parameters combined with comprehensive model selection assessments, we show the pedestal effect to be more reduced in the presence of weak noise than in moderate noise. This reduction rules out independent, additive sources of performance improvement and, together with a simulation study, supports the parsimonious explanation that a single mechanism underlies the pedestal effect and stochastic resonance in contrast perception.

ei

Web DOI [BibTex]


no image
gBoost: A Mathematical Programming Approach to Graph Classification and Regression

Saigo, H., Nowozin, S., Kadowaki, T., Kudo, T., Tsuda, K.

Machine Learning, 75(1):69-89, November 2008 (article)

Abstract
Graph mining methods enumerate frequently appearing subgraph patterns, which can be used as features for subsequent classification or regression. However, frequent patterns are not necessarily informative for the given learning problem. We propose a mathematical programming boosting method (gBoost) that progressively collects informative patterns. Compared to AdaBoost, gBoost can build the prediction rule with fewer iterations. To apply the boosting method to graph data, a branch-and-bound pattern search algorithm is developed based on the DFS code tree. The constructed search space is reused in later iterations to minimize the computation time. Our method can learn more efficiently than the simpler method based on frequent substructure mining, because the output labels are used as an extra information source for pruning the search space. Furthermore, by engineering the mathematical program, a wide range of machine learning problems can be solved without modifying the pattern search algorithm.

ei

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Variational Bayesian Model Selection in Linear Gaussian State-Space based Models

Chiappa, S.

International Workshop on Flexible Modelling: Smoothing and Robustness (FMSR 2008), 2008, pages: 1, November 2008 (poster)

ei

Web [BibTex]

Web [BibTex]


no image
Machine Learning for Motor Skills in Robotics

Peters, J.

K{\"u}nstliche Intelligenz, 2008(4):41-43, November 2008 (article)

Abstract
Autonomous robots that can adapt to novel situations has been a long standing vision of robotics, artificial intelligence, and the cognitive sciences. Early approaches to this goal during the heydays of artificial intelligence research in the late 1980s, however, made it clear that an approach purely based on reasoning or human insights would not be able to model all the perceptuomotor tasks of future robots. Instead, new hope was put in the growing wake of machine learning that promised fully adaptive control algorithms which learn both by observation and trial-and-error. However, to date, learning techniques have yet to fulfill this promise as only few methods manage to scale into the high-dimensional domains of manipulator and humanoid robotics and usually scaling was only achieved in precisely pre-structured domains. We have investigated the ingredients for a general approach to motor skill learning in order to get one step closer towards human-like performance. For doing so, we study two major components for such an approach, i.e., firstly, a theoretically well-founded general approach to representing the required control structures for task representation and execution and, secondly, appropriate learning algorithms which can be applied in this setting.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Kernels, Regularization and Differential Equations

Steinke, F., Schölkopf, B.

Pattern Recognition, 41(11):3271-3286, November 2008 (article)

Abstract
Many common machine learning methods such as Support Vector Machines or Gaussian process inference make use of positive definite kernels, reproducing kernel Hilbert spaces, Gaussian processes, and regularization operators. In this work these objects are presented in a general, unifying framework, and interrelations are highlighted. With this in mind we then show how linear stochastic differential equation models can be incorporated naturally into the kernel framework. And vice versa, many kernel machines can be interpreted in terms of differential equations. We focus especially on ordinary differential equations, also known as dynamical systems, and it is shown that standard kernel inference algorithms are equivalent to Kalman filter methods based on such models. In order not to cloud qualitative insights with heavy mathematical machinery, we restrict ourselves to finite domains, implying that differential equations are treated via their corresponding finite difference equations.

ei

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Mixture Models for Protein Structure Ensembles

Hirsch, M., Habeck, M.

Bioinformatics, 24(19):2184-2192, October 2008 (article)

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
Structure of the human voltage-dependent anion channel

Bayrhuber, M., Meins, T., Habeck, M., Becker, S., Giller, K., Villinger, S., Vonrhein, C., Griesinger, C., Zweckstetter, M., Zeth, K.

Proceedings of the National Academy of Sciences of the United States of America, 105(40):15370-15375, October 2008 (article)

Abstract
The voltage-dependent anion channel (VDAC), also known as mitochondrial porin, is the most abundant protein in the mitochondrial outer membrane (MOM). VDAC is the channel known to guide the metabolic flux across the MOM and plays a key role in mitochondrially induced apoptosis. Here, we present the 3D structure of human VDAC1, which was solved conjointly by NMR spectroscopy and x-ray crystallography. Human VDAC1 (hVDAC1) adopts a β-barrel architecture composed of 19 β-strands with an α-helix located horizontally midway within the pore. Bioinformatic analysis indicates that this channel architecture is common to all VDAC proteins and is adopted by the general import pore TOM40 of mammals, which is also located in the MOM.

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
MRI-Based Attenuation Correction for PET/MRI: A Novel Approach Combining Pattern Recognition and Atlas Registration

Hofmann, M., Steinke, F., Scheel, V., Charpiat, G., Farquhar, J., Aschoff, P., Brady, M., Schölkopf, B., Pichler, B.

Journal of Nuclear Medicine, 49(11):1875-1883, October 2008 (article)

Abstract
For quantitative PET information, correction of tissue photon attenuation is mandatory. Generally in conventional PET, the attenuation map is obtained from a transmission scan, which uses a rotating radionuclide source, or from the CT scan in a combined PET/CT scanner. In the case of PET/MRI scanners currently under development, insufficient space for the rotating source exists; the attenuation map can be calculated from the MR image instead. This task is challenging because MR intensities correlate with proton densities and tissue-relaxation properties, rather than with attenuation-related mass density. METHODS: We used a combination of local pattern recognition and atlas registration, which captures global variation of anatomy, to predict pseudo-CT images from a given MR image. These pseudo-CT images were then used for attenuation correction, as the process would be performed in a PET/CT scanner. RESULTS: For human brain scans, we show on a database of 17 MR/CT image pairs that our method reliably enables e stimation of a pseudo-CT image from the MR image alone. On additional datasets of MRI/PET/CT triplets of human brain scans, we compare MRI-based attenuation correction with CT-based correction. Our approach enables PET quantification with a mean error of 3.2% for predefined regions of interest, which we found to be clinically not significant. However, our method is not specific to brain imaging, and we show promising initial results on 1 whole-body animal dataset. CONCLUSION: This method allows reliable MRI-based attenuation correction for human brain scans. Further work is necessary to validate the method for whole-body imaging.

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
Support Vector Machines and Kernels for Computational Biology

Ben-Hur, A., Ong, C., Sonnenburg, S., Schölkopf, B., Rätsch, G.

PLoS Computational Biology, 4(10: e1000173):1-10, October 2008 (article)

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Approximations for Binary Gaussian Process Classification

Nickisch, H., Rasmussen, C.

Journal of Machine Learning Research, 9, pages: 2035-2078, October 2008 (article)

Abstract
We provide a comprehensive overview of many recent algorithms for approximate inference in Gaussian process models for probabilistic binary classification. The relationships between several approaches are elucidated theoretically, and the properties of the different algorithms are corroborated by experimental results. We examine both 1) the quality of the predictive distributions and 2) the suitability of the different marginal likelihood approximations for model selection (selecting hyperparameters) and compare to a gold standard based on MCMC. Interestingly, some methods produce good predictive distributions although their marginal likelihood approximations are poor. Strong conclusions are drawn about the methods: The Expectation Propagation algorithm is almost always the method of choice unless the computational budget is very tight. We also extend existing methods in various ways, and provide unifying code implementing all approaches.

ei

PDF PDF [BibTex]

PDF PDF [BibTex]


no image
Accurate NMR Structures Through Minimization of an Extended Hybrid Energy

Nilges, M., Bernard, A., Bardiaux, B., Malliavin, T., Habeck, M., Rieping, W.

Structure, 16(9):1305-1312, September 2008 (article)

Abstract
The use of generous distance bounds has been the hallmark of NMR structure determination. However, bounds necessitate the estimation of data quality before the calculation, reduce the information content, introduce human bias, and allow for major errors in the structures. Here, we propose a new rapid structure calculation scheme based on Bayesian analysis. The minimization of an extended energy function, including a new type of distance restraint and a term depending on the data quality, results in an estimation of the data quality in addition to coordinates. This allows for the determination of the optimal weight on the experimental information. The resulting structures are of better quality and closer to the X–ray crystal structure of the same molecule. With the new calculation approach, the analysis of discrepancies from the target distances becomes meaningful. The strategy may be useful in other applications—for example, in homology modeling.

ei

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Similarity, Kernels, and the Triangle Inequality

Jäkel, F., Schölkopf, B., Wichmann, F.

Journal of Mathematical Psychology, 52(5):297-303, September 2008 (article)

Abstract
Similarity is used as an explanatory construct throughout psychology and multidimensional scaling (MDS) is the most popular way to assess similarity. In MDS, similarity is intimately connected to the idea of a geometric representation of stimuli in a perceptual space. Whilst connecting similarity and closeness of stimuli in a geometric representation may be intuitively plausible, Tversky and Gati [Tversky, A., Gati, I. (1982). Similarity, separability, and the triangle inequality. Psychological Review, 89(2), 123–154] have reported data which are inconsistent with the usual geometric representations that are based on segmental additivity. We show that similarity measures based on Shepard’s universal law of generalization [Shepard, R. N. (1987). Toward a universal law of generalization for psychologica science. Science, 237(4820), 1317–1323] lead to an inner product representation in a reproducing kernel Hilbert space. In such a space stimuli are represented by their similarity to all other stimuli. This representation, based on Shepard’s law, has a natural metric that does not have additive segments whilst still retaining the intuitive notion of connecting similarity and distance between stimuli. Furthermore, this representation has the psychologically appealing property that the distance between stimuli is bounded.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Comparison of Pattern Recognition Methods in Classifying High-resolution BOLD Signals Obtained at High Magnetic Field in Monkeys

Ku, S., Gretton, A., Macke, J., Logothetis, N.

Magnetic Resonance Imaging, 26(7):1007-1014, September 2008 (article)

Abstract
Pattern recognition methods have shown that functional magnetic resonance imaging (fMRI) data can reveal significant information about brain activity. For example, in the debate of how object categories are represented in the brain, multivariate analysis has been used to provide evidence of a distributed encoding scheme [Science 293:5539 (2001) 2425–2430]. Many follow-up studies have employed different methods to analyze human fMRI data with varying degrees of success [Nature reviews 7:7 (2006) 523–534]. In this study, we compare four popular pattern recognition methods: correlation analysis, support-vector machines (SVM), linear discriminant analysis (LDA) and Gaussian naïve Bayes (GNB), using data collected at high field (7 Tesla) with higher resolution than usual fMRI studies. We investigate prediction performance on single trials and for averages across varying numbers of stimulus presentations. The performance of the various algorithms depends on the nature of the brain activity being categorized: for several tasks, many of the methods work well, whereas for others, no method performs above chance level. An important factor in overall classification performance is careful preprocessing of the data, including dimensionality reduction, voxel selection and outlier elimination.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Towards the neural basis of the flash-lag effect

Ecker, A., Berens, P., Hoenselaar, A., Subramaniyan, M., Tolias, A., Bethge, M.

International Workshop on Aspects of Adaptive Cortex Dynamics, 2008, pages: 1, September 2008 (poster)

ei

PDF [BibTex]

PDF [BibTex]


no image
A Single-shot Measurement of the Energy of Product States in a Translation Invariant Spin Chain Can Replace Any Quantum Computation

Janzing, D., Wocjan, P., Zhang, S.

New Journal of Physics, 10(093004):1-18, September 2008 (article)

Abstract
In measurement-based quantum computation, quantum algorithms are implemented via sequences of measurements. We describe a translationally invariant finite-range interaction on a one-dimensional qudit chain and prove that a single-shot measurement of the energy of an appropriate computational basis state with respect to this Hamiltonian provides the output of any quantum circuit. The required measurement accuracy scales inverse polynomially with the size of the simulated quantum circuit. This shows that the implementation of energy measurements on generic qudit chains is as hard as the realization of quantum computation. Here, a ‘measurement‘ is any procedure that samples from the spectral measurement induced by the observable and the state under consideration. As opposed to measurement-based quantum computation, the post-measurement state is irrelevant.

ei

PDF DOI [BibTex]


no image
Voluntary Brain Regulation and Communication with ECoG-Signals

Hinterberger, T., Widmann, G., Lal, T., Hill, J., Tangermann, M., Rosenstiel, W., Schölkopf, B., Elger, C., Birbaumer, N.

Epilepsy and Behavior, 13(2):300-306, August 2008 (article)

Abstract
Brain–computer interfaces (BCIs) can be used for communication in writing without muscular activity or for learning to control seizures by voluntary regulation of brain signals such as the electroencephalogram (EEG). Three of five patients with epilepsy were able to spell their names with electrocorticogram (ECoG) signals derived from motor-related areas within only one or two training sessions. Imagery of finger or tongue movements was classified with support-vector classification of autoregressive coefficients derived from the ECoG signals. After training of the classifier, binary classification responses were used to select letters from a computer-generated menu. Offline analysis showed increased theta activity in the unsuccessful patients, whereas the successful patients exhibited dominant sensorimotor rhythms that they could control. The high spatial resolution and increased signal-to-noise ratio in ECoG signals, combined with short training periods, may offer an alternative for communication in complete paralysis, locked-in syndrome, and motor restoration.

ei

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Multi-class Common Spatial Pattern and Information Theoretic Feature Extraction

Grosse-Wentrup, M., Buss, M.

IEEE Transactions on Biomedical Engineering, 55(8):1991-2000, August 2008 (article)

Abstract
We address two shortcomings of the common spatial patterns (CSP) algorithm for spatial filtering in the context of brain--computer interfaces (BCIs) based on electroencephalography/magnetoencephalography (EEG/MEG): First, the question of optimality of CSP in terms of the minimal achievable classification error remains unsolved. Second, CSP has been initially proposed for two-class paradigms. Extensions to multiclass paradigms have been suggested, but are based on heuristics. We address these shortcomings in the framework of information theoretic feature extraction (ITFE). We show that for two-class paradigms, CSP maximizes an approximation of mutual information of extracted EEG/MEG components and class labels. This establishes a link between CSP and the minimal classification error. For multiclass paradigms, we point out that CSP by joint approximate diagonalization (JAD) is equivalent to independent component analysis (ICA), and provide a method to choose those independent components (ICs) that approximately maximize mutual information of ICs and class labels. This eliminates the need for heuristics in multiclass CSP, and allows incorporating prior class probabilities. The proposed method is applied to the dataset IIIa of the third BCI competition, and is shown to increase the mean classification accuracy by 23.4% in comparison to multiclass CSP.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Policy Learning: A Unified Perspective With Applications In Robotics

Peters, J., Kober, J., Nguyen-Tuong, D.

8th European Workshop on Reinforcement Learning for Robotics (EWRL 2008), 8, pages: 10, July 2008 (poster)

Abstract
Policy Learning approaches are among the best suited methods for high-dimensional, continuous control systems such as anthropomorphic robot arms and humanoid robots. In this paper, we show two contributions: firstly, we show a unified perspective which allows us to derive several policy learning al- gorithms from a common point of view, i.e, policy gradient algorithms, natural- gradient algorithms and EM-like policy learning. Secondly, we present several applications to both robot motor primitive learning as well as to robot control in task space. Results both from simulation and several different real robots are shown.

ei

PDF [BibTex]

PDF [BibTex]


no image
At-TAX: A Whole Genome Tiling Array Resource for Developmental Expression Analysis and Transcript Identification in Arabidopsis thaliana

Laubinger, S., Zeller, G., Henz, S., Sachsenberg, T., Widmer, C., Naouar, N., Vuylsteke, M., Schölkopf, B., Rätsch, G., Weigel, D.

Genome Biology, 9(7: R112):1-16, July 2008 (article)

Abstract
Gene expression maps for model organisms, including Arabidopsis thaliana, have typically been created using gene-centric expression arrays. Here, we describe a comprehensive expression atlas, Arabidopsis thaliana Tiling Array Express (At-TAX), which is based on whole-genome tiling arrays. We demonstrate that tiling arrays are accurate tools for gene expression analysis and identified more than 1,000 unannotated transcribed regions. Visualizations of gene expression estimates, transcribed regions, and tiling probe measurements are accessible online at the At-TAX homepage.

ei

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Reinforcement Learning of Perceptual Coupling for Motor Primitives

Kober, J., Peters, J.

8th European Workshop on Reinforcement Learning for Robotics (EWRL 2008), 8, pages: 16, July 2008 (poster)

Abstract
Reinforcement learning is a natural choice for the learning of complex motor tasks by reward-related self-improvement. As the space of movements is high-dimensional and continuous, a policy parametrization is needed which can be used in this context. Traditional motor primitive approaches deal largely with open-loop policies which can only deal with small perturbations. In this paper, we present a new type of motor primitive policies which serve as closed-loop policies together with an appropriate learning algorithm. Our new motor primitives are an augmented version version of the dynamic systems motor primitives that incorporates perceptual coupling to external variables. We show that these motor primitives can perform complex tasks such a Ball-in-a-Cup or Kendama task even with large variances in the initial conditions where a human would hardly be able to learn this task. We initialize the open-loop policies by imitation learning and the perceptual coupling with a handcrafted solution. We first improve the open-loop policies and subsequently the perceptual coupling using a novel reinforcement learning method which is particularly well-suited for motor primitives.

ei

PDF [BibTex]

PDF [BibTex]


no image
Flexible Models for Population Spike Trains

Bethge, M., Macke, J., Berens, P., Ecker, A., Tolias, A.

AREADNE 2008: Research in Encoding and Decoding of Neural Ensembles, 2, pages: 52, June 2008 (poster)

ei

PDF [BibTex]

PDF [BibTex]


no image
Graphical Analysis of NMR Structural Quality and Interactive Contact Map of NOE Assignments in ARIA

Bardiaux, B., Bernard, A., Rieping, W., Habeck, M., Malliavin, T., Nilges, M.

BMC Structural Biology, 8(30):1-5, June 2008 (article)

Abstract
BACKGROUND: The Ambiguous Restraints for Iterative Assignment (ARIA) approach is widely used for NMR structure determination. It is based on simultaneously calculating structures and assigning NOE through an iterative protocol. The final solution consists of a set of conformers and a list of most probable assignments for the input NOE peak list. RESULTS: ARIA was extended with a series of graphical tools to facilitate a detailed analysis of the intermediate and final results of the ARIA protocol. These additional features provide (i) an interactive contact map, serving as a tool for the analysis of assignments, and (ii) graphical representations of structure quality scores and restraint statistics. The interactive contact map between residues can be clicked to obtain information about the restraints and their contributions. Profiles of quality scores are plotted along the protein sequence, and contact maps provide information of the agreement with the data on a residue pair level. CONCLUSIONS: The g raphical tools and outputs described here significantly extend the validation and analysis possibilities of NOE assignments given by ARIA as well as the analysis of the quality of the final structure ensemble. These tools are included in the latest version of ARIA, which is available at http://aria.pasteur.fr. The Web site also contains an installation guide, a user manual and example calculations.

ei

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Pairwise Correlations and Multineuronal Firing Patterns in the Primary Visual Cortex of the Awake, Behaving Macaque

Berens, P., Ecker, A., Subramaniyan, M., Macke, J., Hauck, P., Bethge, M., Tolias, A.

AREADNE 2008: Research in Encoding and Decoding of Neural Ensembles, 2, pages: 48, June 2008 (poster)

ei

PDF [BibTex]

PDF [BibTex]


no image
Visual saliency re-visited: Center-surround patterns emerge as optimal predictors for human fixation targets

Wichmann, F., Kienzle, W., Schölkopf, B., Franz, M.

Journal of Vision, 8(6):635, 8th Annual Meeting of the Vision Sciences Society (VSS), June 2008 (poster)

Abstract
Humans perceives the world by directing the center of gaze from one location to another via rapid eye movements, called saccades. In the period between saccades the direction of gaze is held fixed for a few hundred milliseconds (fixations). It is primarily during fixations that information enters the visual system. Remarkably, however, after only a few fixations we perceive a coherent, high-resolution scene despite the visual acuity of the eye quickly decreasing away from the center of gaze: This suggests an effective strategy for selecting saccade targets. Top-down effects, such as the observer's task, thoughts, or intentions have an effect on saccadic selection. Equally well known is that bottom-up effects-local image structure-influence saccade targeting regardless of top-down effects. However, the question of what the most salient visual features are is still under debate. Here we model the relationship between spatial intensity patterns in natural images and the response of the saccadic system using tools from machine learning. This allows us to identify the most salient image patterns that guide the bottom-up component of the saccadic selection system, which we refer to as perceptive fields. We show that center-surround patterns emerge as the optimal solution to the problem of predicting saccade targets. Using a novel nonlinear system identification technique we reduce our learned classifier to a one-layer feed-forward network which is surprisingly simple compared to previously suggested models assuming more complex computations such as multi-scale processing, oriented filters and lateral inhibition. Nevertheless, our model is equally predictive and generalizes better to novel image sets. Furthermore, our findings are consistent with neurophysiological hardware in the superior colliculus. Bottom-up visual saliency may thus not be computed cortically as has been thought previously.

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
Kernel Methods in Machine Learning

Hofmann, T., Schölkopf, B., Smola, A.

Annals of Statistics, 36(3):1171-1220, June 2008 (article)

Abstract
We review machine learning methods employing positive definite kernels. These methods formulate learning and estimation problems in a reproducing kernel Hilbert space (RKHS) of functions defined on the data domain, expanded in terms of a kernel. Working in linear spaces of function has the benefit of facilitating the construction and analysis of learning algorithms while at the same time allowing large classes of functions. The latter include nonlinear functions as well as functions defined on nonvectorial data.

ei

PDF PDF DOI [BibTex]

PDF PDF DOI [BibTex]


no image
Cross-validation Optimization for Large Scale Structured Classification Kernel Methods

Seeger, M.

Journal of Machine Learning Research, 9, pages: 1147-1178, June 2008 (article)

Abstract
We propose a highly efficient framework for penalized likelihood kernel methods applied to multi-class models with a large, structured set of classes. As opposed to many previous approaches which try to decompose the fitting problem into many smaller ones, we focus on a Newton optimization of the complete model, making use of model structure and linear conjugate gradients in order to approximate Newton search directions. Crucially, our learning method is based entirely on matrix-vector multiplication primitives with the kernel matrices and their derivatives, allowing straightforward specialization to new kernels, and focusing code optimization efforts to these primitives only. Kernel parameters are learned automatically, by maximizing the cross-validation log likelihood in a gradient-based way, and predictive probabilities are estimated. We demonstrate our approach on large scale text classification tasks with hierarchical structure on thousands of classes, achieving state-of-the-art results in an order of magnitude less time than previous work.

ei

PDF PDF [BibTex]

PDF PDF [BibTex]


no image
Analysis of Pattern Recognition Methods in Classifying Bold Signals in Monkeys at 7-Tesla

Ku, S., Gretton, A., Macke, J., Tolias, A., Logothetis, N.

AREADNE 2008: Research in Encoding and Decoding of Neural Ensembles, 2, pages: 67, June 2008 (poster)

Abstract
Pattern recognition methods have shown that fMRI data can reveal significant information about brain activity. For example, in the debate of how object-categories are represented in the brain, multivariate analysis has been used to provide evidence of distributed encoding schemes. Many follow-up studies have employed different methods to analyze human fMRI data with varying degrees of success. In this study we compare four popular pattern recognition methods: correlation analysis, support-vector machines (SVM), linear discriminant analysis and Gaussian naïve Bayes (GNB), using data collected at high field (7T) with higher resolution than usual fMRI studies. We investigate prediction performance on single trials and for averages across varying numbers of stimulus presentations. The performance of the various algorithms depends on the nature of the brain activity being categorized: for several tasks, many of the methods work well, whereas for others, no methods perform above chance level. An important factor in overall classification performance is careful preprocessing of the data, including dimensionality reduction, voxel selection, and outlier elimination.

ei

[BibTex]

[BibTex]


no image
Reinforcement Learning of Motor Skills with Policy Gradients

Peters, J., Schaal, S.

Neural Networks, 21(4):682-697, May 2008 (article)

ei

PDF Web DOI [BibTex]