Header logo is


2002


no image
Gender Classification of Human Faces

Graf, A., Wichmann, F.

In Biologically Motivated Computer Vision, pages: 1-18, (Editors: Bülthoff, H. H., S.W. Lee, T. A. Poggio and C. Wallraven), Springer, Berlin, Germany, Second International Workshop on Biologically Motivated Computer Vision (BMCV), November 2002 (inproceedings)

Abstract
This paper addresses the issue of combining pre-processing methods—dimensionality reduction using Principal Component Analysis (PCA) and Locally Linear Embedding (LLE)—with Support Vector Machine (SVM) classification for a behaviorally important task in humans: gender classification. A processed version of the MPI head database is used as stimulus set. First, summary statistics of the head database are studied. Subsequently the optimal parameters for LLE and the SVM are sought heuristically. These values are then used to compare the original face database with its processed counterpart and to assess the behavior of a SVM with respect to changes in illumination and perspective of the face images. Overall, PCA was superior in classification performance and allowed linear separability.

ei

PDF PDF DOI [BibTex]

2002


PDF PDF DOI [BibTex]


no image
Insect-Inspired Estimation of Self-Motion

Franz, MO., Chahl, JS.

In Biologically Motivated Computer Vision, (2525):171-180, LNCS, (Editors: Bülthoff, H.H. , S.W. Lee, T.A. Poggio, C. Wallraven), Springer, Berlin, Germany, Second International Workshop on Biologically Motivated Computer Vision (BMCV), November 2002 (inproceedings)

Abstract
The tangential neurons in the fly brain are sensitive to the typical optic flow patterns generated during self-motion. In this study, we examine whether a simplified linear model of these neurons can be used to estimate self-motion from the optic flow. We present a theory for the construction of an optimal linear estimator incorporating prior knowledge about the environment. The optimal estimator is tested on a gantry carrying an omnidirectional vision sensor. The experiments show that the proposed approach leads to accurate and robust estimates of rotation rates, whereas translation estimates turn out to be less reliable.

ei

PDF PDF DOI [BibTex]

PDF PDF DOI [BibTex]


no image
Combining sensory Information to Improve Visualization

Ernst, M., Banks, M., Wichmann, F., Maloney, L., Bülthoff, H.

In Proceedings of the Conference on Visualization ‘02 (VIS ‘02), pages: 571-574, (Editors: Moorhead, R. , M. Joy), IEEE, Piscataway, NJ, USA, IEEE Conference on Visualization (VIS '02), October 2002 (inproceedings)

Abstract
Seemingly effortlessly the human brain reconstructs the three-dimensional environment surrounding us from the light pattern striking the eyes. This seems to be true across almost all viewing and lighting conditions. One important factor for this apparent easiness is the redundancy of information provided by the sensory organs. For example, perspective distortions, shading, motion parallax, or the disparity between the two eyes' images are all, at least partly, redundant signals which provide us with information about the three-dimensional layout of the visual scene. Our brain uses all these different sensory signals and combines the available information into a coherent percept. In displays visualizing data, however, the information is often highly reduced and abstracted, which may lead to an altered perception and therefore a misinterpretation of the visualized data. In this panel we will discuss mechanisms involved in the combination of sensory information and their implications for simulations using computer displays, as well as problems resulting from current display technology such as cathode-ray tubes.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Incorporating Invariances in Non-Linear Support Vector Machines

Chapelle, O., Schölkopf, B.

In Advances in Neural Information Processing Systems 14, pages: 609-616, (Editors: TG Dietterich and S Becker and Z Ghahramani), MIT Press, Cambridge, MA, USA, 15th Annual Neural Information Processing Systems Conference (NIPS), September 2002 (inproceedings)

Abstract
The choice of an SVM kernel corresponds to the choice of a representation of the data in a feature space and, to improve performance, it should therefore incorporate prior knowledge such as known transformation invariances. We propose a technique which extends earlier work and aims at incorporating invariances in nonlinear kernels. We show on a digit recognition task that the proposed approach is superior to the Virtual Support Vector method, which previously had been the method of choice.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
A kernel approach for learning from almost orthogonal patterns

Schölkopf, B., Weston, J., Eskin, E., Leslie, C., Noble, W.

In Principles of Data Mining and Knowledge Discovery, Lecture Notes in Computer Science, 2430/2431, pages: 511-528, Lecture Notes in Computer Science, (Editors: T Elomaa and H Mannila and H Toivonen), Springer, Berlin, Germany, 13th European Conference on Machine Learning (ECML) and 6th European Conference on Principles and Practice of Knowledge Discovery in Databases (PKDD'2002), 2002 (inproceedings)

ei

PostScript DOI [BibTex]

PostScript DOI [BibTex]


no image
Luminance Artifacts on CRT Displays

Wichmann, F.

In IEEE Visualization, pages: 571-574, (Editors: Moorhead, R.; Gross, M.; Joy, K. I.), IEEE Visualization, 2002 (inproceedings)

Abstract
Most visualization panels today are still built around cathode-ray tubes (CRTs), certainly on personal desktops at work and at home. Whilst capable of producing pleasing images for common applications ranging from email writing to TV and DVD presentation, it is as well to note that there are a number of nonlinear transformations between input (voltage) and output (luminance) which distort the digital and/or analogue images send to a CRT. Some of them are input-independent and hence easy to fix, e.g. gamma correction, but others, such as pixel interactions, depend on the content of the input stimulus and are thus harder to compensate for. CRT-induced image distortions cause problems not only in basic vision research but also for applications where image fidelity is critical, most notably in medicine (digitization of X-ray images for diagnostic purposes) and in forms of online commerce, such as the online sale of images, where the image must be reproduced on some output device which will not have the same transfer function as the customer's CRT. I will present measurements from a number of CRTs and illustrate how some of their shortcomings may be problematic for the aforementioned applications.

ei

[BibTex]

[BibTex]


no image
Learning rhythmic movements by demonstration using nonlinear oscillators

Ijspeert, J. A., Nakanishi, J., Schaal, S.

In IEEE International Conference on Intelligent Robots and Systems (IROS 2002), pages: 958-963, Piscataway, NJ: IEEE, Lausanne, Sept.30-Oct.4 2002, 2002, clmc (inproceedings)

Abstract
Locally weighted learning (LWL) is a class of statistical learning techniques that provides useful representations and training algorithms for learning about complex phenomena during autonomous adaptive control of robotic systems. This paper introduces several LWL algorithms that have been tested successfully in real-time learning of complex robot tasks. We discuss two major classes of LWL, memory-based LWL and purely incremental LWL that does not need to remember any data explicitly. In contrast to the traditional beliefs that LWL methods cannot work well in high-dimensional spaces, we provide new algorithms that have been tested in up to 50 dimensional learning problems. The applicability of our LWL algorithms is demonstrated in various robot learning examples, including the learning of devil-sticking, pole-balancing of a humanoid robot arm, and inverse-dynamics learning for a seven degree-of-freedom robot.

am

link (url) [BibTex]

link (url) [BibTex]


no image
Pressure Isotherms of Hydrogen Adsorption in Carbon Nanostructures

Chen, X., Dettlaff-Weglikowska, U., Haluska, M., Hulman, M., Roth, S., Hirscher, M., Becher, M.

In Making Functional Materials with Nanotubes, pages: Z9.11.1-Z9.11.6, Materials Research Society Symposium Proceedings, MRS, Boston [Mass.], 2002 (inproceedings)

mms

[BibTex]

[BibTex]


no image
Untersuchungen zur Spindynamik in nanostrukturierten ferromagnetischen Schichtsystemen

Puzic, A.

Universität Stuttgart, Stuttgart, 2002 (mastersthesis)

mms

[BibTex]

[BibTex]


no image
Hydrogen Storage in Carbon SWNTs: Atomic or Molecular?

Haluska, M., Hirscher, M., Becher, M., Dettlaff-Weglikowska, U., Chen, X., Roth, S.

In Structural and Electronic Properties of Molecular Nanostructures, pages: 601-605, AIP Conference Proceedings, AIP, Kirchberg, Tirol [Austria], 2002 (inproceedings)

mms

[BibTex]

[BibTex]


no image
Magnetic Imaging of Nanostructured Systems with Transmission X-Ray Microscopy

Eimüller, T.

Bayrische Julius-Maximilians-Universität Würzburg, Würzburg, 2002 (phdthesis)

mms

[BibTex]

[BibTex]


no image
Ab-initio Berechnung der Spinwellenspektren von Eisen, Kobalt und Nickel

Grotheer, O.

Universität Stuttgart, Stuttgart, 2002 (phdthesis)

mms

[BibTex]

[BibTex]


no image
Kernspinresonanzuntersuchungen zur Diffusion von Wasserstoff in kubischen Lavesphasen

Eberle, U.

Universität Stuttgart, Stuttgart, 2002 (phdthesis)

mms

[BibTex]

[BibTex]


no image
Hydrogen Storage in Nanostructured Carbon Materials at Room Temperature

Chen, X., Dettlaff-Weglikowska, U., Haluska, M., Hirscher, M., Becher, M., Roth, S.

In Structural and Electronic Properties of Molecular Nanostructures, pages: 597-600, AIP Conference Proceedings, AIP, Kirchberg, Tirol [Austria], 2002 (inproceedings)

mms

[BibTex]

[BibTex]


no image
Movement imitation with nonlinear dynamical systems in humanoid robots

Ijspeert, J. A., Nakanishi, J., Schaal, S.

In International Conference on Robotics and Automation (ICRA2002), Washinton, May 11-15 2002, 2002, clmc (inproceedings)

Abstract
Locally weighted learning (LWL) is a class of statistical learning techniques that provides useful representations and training algorithms for learning about complex phenomena during autonomous adaptive control of robotic systems. This paper introduces several LWL algorithms that have been tested successfully in real-time learning of complex robot tasks. We discuss two major classes of LWL, memory-based LWL and purely incremental LWL that does not need to remember any data explicitly. In contrast to the traditional beliefs that LWL methods cannot work well in high-dimensional spaces, we provide new algorithms that have been tested in up to 50 dimensional learning problems. The applicability of our LWL algorithms is demonstrated in various robot learning examples, including the learning of devil-sticking, pole-balancing of a humanoid robot arm, and inverse-dynamics learning for a seven degree-of-freedom robot.

am

link (url) [BibTex]

link (url) [BibTex]


no image
A locally weighted learning composite adaptive controller with structure adaptation

Nakanishi, J., Farrell, J. A., Schaal, S.

In IEEE International Conference on Intelligent Robots and Systems (IROS 2002), Lausanne, Sept.30-Oct.4 2002, 2002, clmc (inproceedings)

Abstract
This paper introduces a provably stable adaptive learning controller which employs nonlinear function approximation with automatic growth of the learning network according to the nonlinearities and the working domain of the control system. The unknown function in the dynamical system is approximated by piecewise linear models using a nonparametric regression technique. Local models are allocated as necessary and their parameters are optimized on-line. Inspired by composite adaptive control methods, the pro-posed learning adaptive control algorithm uses both the tracking error and the estimation error to up-date the parameters. We provide Lyapunov analyses that demonstrate the stability properties of the learning controller. Numerical simulations illustrate rapid convergence of the tracking error and the automatic structure adaptation capability of the function approximator. This paper introduces a provably stable adaptive learning controller which employs nonlinear function approximation with automatic growth of the learning network according to the nonlinearities and the working domain of the control system. The unknown function in the dynamical system is approximated by piecewise linear models using a nonparametric regression technique. Local models are allocated as necessary and their parameters are optimized on-line. Inspired by composite adaptive control methods, the pro-posed learning adaptive control algorithm uses both the tracking error and the estimation error to up-date the parameters. We provide Lyapunov analyses that demonstrate the stability properties of the learning controller. Numerical simulations illustrate rapid convergence of the tracking error and the automatic structure adaptation capability of the function approximator

am

link (url) [BibTex]

link (url) [BibTex]


no image
Nanomolding based fabrication of synthetic gecko foot-hairs

Sitti, M., Fearing, R. S.

In Nanotechnology, 2002. IEEE-NANO 2002. Proceedings of the 2002 2nd IEEE Conference on, pages: 137-140, 2002 (inproceedings)

pi

Project Page [BibTex]

Project Page [BibTex]


no image
Micromagnetism and the microstructure of the cell walls in Sm2Co17 based permanent magnets

Goll, D., Hadjipanayis, G. C., Kronmüller, H.

In Proceedings of the 17th International Workshop on Rare-Earth Magnets and their Applications, pages: 696-703, Rinton Press, Newark, Delaware, USA, 2002 (inproceedings)

mms

[BibTex]

[BibTex]


no image
Ab-initio study of the influence of epitaxial strain on magnetoelastic properties

Komelj, M., Fähnle, M.

In Atomistic Aspects of Epitaxial Growth, pages: 439-447, NATO Science series: Series 2, Mathematics, Physics, and Chemistry, Kluwer Academic Publishers, Dassia, Corfu [Greece], 2002 (inproceedings)

mms

[BibTex]

[BibTex]

2000


no image
Reciprocal excitation between biological and robotic research

Schaal, S., Sternad, D., Dean, W., Kotoska, S., Osu, R., Kawato, M.

In Sensor Fusion and Decentralized Control in Robotic Systems III, Proceedings of SPIE, 4196, pages: 30-40, Boston, MA, Nov.5-8, 2000, November 2000, clmc (inproceedings)

Abstract
While biological principles have inspired researchers in computational and engineering research for a long time, there is still rather limited knowledge flow back from computational to biological domains. This paper presents examples of our work where research on anthropomorphic robots lead us to new insights into explaining biological movement phenomena, starting from behavioral studies up to brain imaging studies. Our research over the past years has focused on principles of trajectory formation with nonlinear dynamical systems, on learning internal models for nonlinear control, and on advanced topics like imitation learning. The formal and empirical analyses of the kinematics and dynamics of movements systems and the tasks that they need to perform lead us to suggest principles of motor control that later on we found surprisingly related to human behavior and even brain activity.

am

link (url) [BibTex]

2000


link (url) [BibTex]


no image
Nonlinear dynamical systems as movement primitives

Schaal, S., Kotosaka, S., Sternad, D.

In Humanoids2000, First IEEE-RAS International Conference on Humanoid Robots, CD-Proceedings, Cambridge, MA, September 2000, clmc (inproceedings)

Abstract
This paper explores the idea to create complex human-like movements from movement primitives based on nonlinear attractor dynamics. Each degree-of-freedom of a limb is assumed to have two independent abilities to create movement, one through a discrete dynamic system, and one through a rhythmic system. The discrete system creates point-to-point movements based on internal or external target specifications. The rhythmic system can add an additional oscillatory movement relative to the current position of the discrete system. In the present study, we develop appropriate dynamic systems that can realize the above model, motivate the particular choice of the systems from a biological and engineering point of view, and present simulation results of the performance of such movement primitives. The model was implemented for a drumming task on a humanoid robot

am

link (url) [BibTex]

link (url) [BibTex]


no image
Real Time Learning in Humanoids: A challenge for scalability of Online Algorithms

Vijayakumar, S., Schaal, S.

In Humanoids2000, First IEEE-RAS International Conference on Humanoid Robots, CD-Proceedings, Cambridge, MA, September 2000, clmc (inproceedings)

Abstract
While recent research in neural networks and statistical learning has focused mostly on learning from finite data sets without stringent constraints on computational efficiency, there is an increasing number of learning problems that require real-time performance from an essentially infinite stream of incrementally arriving data. This paper demonstrates how even high-dimensional learning problems of this kind can successfully be dealt with by techniques from nonparametric regression and locally weighted learning. As an example, we describe the application of one of the most advanced of such algorithms, Locally Weighted Projection Regression (LWPR), to the on-line learning of the inverse dynamics model of an actual seven degree-of-freedom anthropomorphic robot arm. LWPR's linear computational complexity in the number of input dimensions, its inherent mechanisms of local dimensionality reduction, and its sound learning rule based on incremental stochastic leave-one-out cross validation allows -- to our knowledge for the first time -- implementing inverse dynamics learning for such a complex robot with real-time performance. In our sample task, the robot acquires the local inverse dynamics model needed to trace a figure-8 in only 60 seconds of training.

am

link (url) [BibTex]

link (url) [BibTex]


no image
Synchronized robot drumming by neural oscillator

Kotosaka, S., Schaal, S.

In The International Symposium on Adaptive Motion of Animals and Machines, Montreal, Canada, August 2000, clmc (inproceedings)

Abstract
Sensory-motor integration is one of the key issues in robotics. In this paper, we propose an approach to rhythmic arm movement control that is synchronized with an external signal based on exploiting a simple neural oscillator network. Trajectory generation by the neural oscillator is a biologically inspired method that can allow us to generate a smooth and continuous trajectory. The parameter tuning of the oscillators is used to generate a synchronized movement with wide intervals. We adopted the method for the drumming task as an example task. By using this method, the robot can realize synchronized drumming with wide drumming intervals in real time. The paper also shows the experimental results of drumming by a humanoid robot.

am

link (url) [BibTex]

link (url) [BibTex]


no image
Choosing nu in support vector regression with different noise models — theory and experiments

Chalimourda, A., Schölkopf, B., Smola, A.

In Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural Networks, IJCNN 2000, Neural Computing: New Challenges and Perspectives for the New Millennium, IEEE, International Joint Conference on Neural Networks, 2000 (inproceedings)

ei

[BibTex]

[BibTex]


no image
Real-time robot learning with locally weighted statistical learning

Schaal, S., Atkeson, C. G., Vijayakumar, S.

In International Conference on Robotics and Automation (ICRA2000), San Francisco, April 2000, 2000, clmc (inproceedings)

Abstract
Locally weighted learning (LWL) is a class of statistical learning techniques that provides useful representations and training algorithms for learning about complex phenomena during autonomous adaptive control of robotic systems. This paper introduces several LWL algorithms that have been tested successfully in real-time learning of complex robot tasks. We discuss two major classes of LWL, memory-based LWL and purely incremental LWL that does not need to remember any data explicitly. In contrast to the traditional beliefs that LWL methods cannot work well in high-dimensional spaces, we provide new algorithms that have been tested in up to 50 dimensional learning problems. The applicability of our LWL algorithms is demonstrated in various robot learning examples, including the learning of devil-sticking, pole-balancing of a humanoid robot arm, and inverse-dynamics learning for a seven degree-of-freedom robot.

am

link (url) [BibTex]

link (url) [BibTex]


no image
Diffusion von Wasserstoff in Lavesphasen / Diffusion von Wasserstoff in heterogenen Systemen.

Herrmann, A.

Universität Stuttgart, Stuttgart, 2000 (phdthesis)

mms

[BibTex]

[BibTex]


no image
High-performance nanocrystalline PrFeB-based bonded permanent magnets

Goll, D., Kleinschroth, I., Kronmüller, H.

In Proceedings of the 16th International Workshop on Rare-Earth Magnets and Their Applications, pages: 641-650, Japan Institute of Metals, 2000 (inproceedings)

mms

[BibTex]

[BibTex]


no image
Fast learning of biomimetic oculomotor control with nonparametric regression networks

Shibata, T., Schaal, S.

In International Conference on Robotics and Automation (ICRA2000), pages: 3847-3854, San Francisco, April 2000, 2000, clmc (inproceedings)

Abstract
Accurate oculomotor control is one of the essential pre-requisites of successful visuomotor coordination. Given the variable nonlinearities of the geometry of binocular vision as well as the possible nonlinearities of the oculomotor plant, it is desirable to accomplish accurate oculomotor control through learning approaches. In this paper, we investigate learning control for a biomimetic active vision system mounted on a humanoid robot. By combining a biologically inspired cerebellar learning scheme with a state-of-the-art statistical learning network, our robot system is able to acquire high performance visual stabilization reflexes after about 40 seconds of learning despite significant nonlinearities and processing delays in the system.

am

link (url) [BibTex]

link (url) [BibTex]


no image
Locally weighted projection regression: An O(n) algorithm for incremental real time learning in high dimensional spaces

Vijayakumar, S., Schaal, S.

In Proceedings of the Seventeenth International Conference on Machine Learning (ICML 2000), 1, pages: 288-293, Stanford, CA, 2000, clmc (inproceedings)

Abstract
Locally weighted projection regression is a new algorithm that achieves nonlinear function approximation in high dimensional spaces with redundant and irrelevant input dimensions. At its core, it uses locally linear models, spanned by a small number of univariate regressions in selected directions in input space. This paper evaluates different methods of projection regression and derives a nonlinear function approximator based on them. This nonparametric local learning system i) learns rapidly with second order learning methods based on incremental training, ii) uses statistically sound stochastic cross validation to learn iii) adjusts its weighting kernels based on local information only, iv) has a computational complexity that is linear in the number of inputs, and v) can deal with a large number of - possibly redundant - inputs, as shown in evaluations with up to 50 dimensional data sets. To our knowledge, this is the first truly incremental spatially localized learning method to combine all these properties.

am

link (url) [BibTex]

link (url) [BibTex]


no image
Experimental and theoretical study of the Verwey transition in magnetite

Brabers, V. A. M., Brabers, J. H. V. J., Walz, F., Kronmüller, H.

In Proceedings 8th International Conference on Ferrites, pages: 123-125, Japan Society of Powder and Powder Metallurgy, 2000 (inproceedings)

mms

[BibTex]

[BibTex]


no image
Evolution of microstructure and microchemistry in the high-temperature Sm(Co, Fe, Cu, Zr)z magnets

Zhang, Y. W., Hadjipanayis, G. C., Goll, D., Kronmüller, H., Chen, C., Nelson, C., Krishnan, K.

In Proceedings of the 16th International Workshop on Rare-Earth Magnets and Their Applications, pages: 169-178, Sendai, Japan, 2000 (inproceedings)

mms

[BibTex]

[BibTex]


no image
Fundamental investigations and industrial applications of magnetostriction

Hirscher, M., Fischer, S. F., Reininger, T.

In Modern Trends in Magnetostriction Study and Application. Proceedings of the NATO Advanced Study Institute on Modern Trends in Magnetostriction, 5, pages: 307-329, NATO Science Series: II: Mathematics, Physics and Chemistry, Kluwer Academic Publishers, Kyiv, Ukraine, 2000 (inproceedings)

mms

[BibTex]

[BibTex]


no image
Inverse kinematics for humanoid robots

Tevatia, G., Schaal, S.

In International Conference on Robotics and Automation (ICRA2000), pages: 294-299, San Fransisco, April 24-28, 2000, 2000, clmc (inproceedings)

Abstract
Real-time control of the endeffector of a humanoid robot in external coordinates requires computationally efficient solutions of the inverse kinematics problem. In this context, this paper investigates methods of resolved motion rate control (RMRC) that employ optimization criteria to resolve kinematic redundancies. In particular we focus on two established techniques, the pseudo inverse with explicit optimization and the extended Jacobian method. We prove that the extended Jacobian method includes pseudo-inverse methods as a special solution. In terms of computational complexity, however, pseudo-inverse and extended Jacobian differ significantly in favor of pseudo-inverse methods. Employing numerical estimation techniques, we introduce a computationally efficient version of the extended Jacobian with performance comparable to the original version . Our results are illustrated in simulation studies with a multiple degree-of-freedom robot, and were tested on a 30 degree-of-freedom robot. 

am

link (url) [BibTex]

link (url) [BibTex]


no image
Fast and efficient incremental learning for high-dimensional movement systems

Vijayakumar, S., Schaal, S.

In International Conference on Robotics and Automation (ICRA2000), San Francisco, April 2000, 2000, clmc (inproceedings)

Abstract
We introduce a new algorithm, Locally Weighted Projection Regression (LWPR), for incremental real-time learning of nonlinear functions, as particularly useful for problems of autonomous real-time robot control that re-quires internal models of dynamics, kinematics, or other functions. At its core, LWPR uses locally linear models, spanned by a small number of univariate regressions in selected directions in input space, to achieve piecewise linear function approximation. The most outstanding properties of LWPR are that it i) learns rapidly with second order learning methods based on incremental training, ii) uses statistically sound stochastic cross validation to learn iii) adjusts its local weighting kernels based on only local information to avoid interference problems, iv) has a computational complexity that is linear in the number of inputs, and v) can deal with a large number ofâ??possibly redundant and/or irrelevantâ??inputs, as shown in evaluations with up to 50 dimensional data sets for learning the inverse dynamics of an anthropomorphic robot arm. To our knowledge, this is the first incremental neural network learning method to combine all these properties and that is well suited for complex on-line learning problems in robotics.

am

link (url) [BibTex]

link (url) [BibTex]


no image
Untersuchung von Magnetisierungsprozessen in dünnen Nd2Fe14B-Schichten

Melsheimer, A.

Universität Stuttgart, Stuttgart, 2000 (phdthesis)

mms

[BibTex]

[BibTex]


no image
Micromagnetic and microstructural analysis of the temperature dependence of the coercive field of Sm2(Co, Cu, Fe, Zr)17 permanent magnets

Goll, D., Sigle, W., Hadjipanayis, G. C., Kronmüller, H.

In Proceedings of the 16th International Workshop on Rare-Earth Magnets and Their Applications, pages: 61-70, Kaneko, H.; Homma, M.; Okada, M., 2000 (inproceedings)

mms

[BibTex]

[BibTex]


no image
On-line learning for humanoid robot systems

Conradt, J., Tevatia, G., Vijayakumar, S., Schaal, S.

In Proceedings of the Seventeenth International Conference on Machine Learning (ICML 2000), 1, pages: 191-198, Stanford, CA, 2000, clmc (inproceedings)

Abstract
Humanoid robots are high-dimensional movement systems for which analytical system identification and control methods are insufficient due to unknown nonlinearities in the system structure. As a way out, supervised learning methods can be employed to create model-based nonlinear controllers which use functions in the control loop that are estimated by learning algorithms. However, internal models for humanoid systems are rather high-dimensional such that conventional learning algorithms would suffer from slow learning speed, catastrophic interference, and the curse of dimensionality. In this paper we explore a new statistical learning algorithm, locally weighted projection regression (LWPR), for learning internal models in real-time. LWPR is a nonparametric spatially localized learning system that employs the less familiar technique of partial least squares regression to represent functional relationships in a piecewise linear fashion. The algorithm can work successfully in very high dimensional spaces and detect irrelevant and redundant inputs while only requiring a computational complexity that is linear in the number of input dimensions. We demonstrate the application of the algorithm in learning two classical internal models of robot control, the inverse kinematics and the inverse dynamics of an actual seven degree-of-freedom anthropomorphic robot arm. For both examples, LWPR can achieve excellent real-time learning results from less than one hour of actual training data.

am

link (url) [BibTex]

link (url) [BibTex]


no image
Humanoid Robot DB

Kotosaka, S., Shibata, T., Schaal, S.

In Proceedings of the International Conference on Machine Automation (ICMA2000), pages: 21-26, 2000, clmc (inproceedings)

am

[BibTex]

[BibTex]


no image
Wing transmission for a micromechanical flying insect

Fearing, R. S., Chiang, K. H., Dickinson, M. H., Pick, D., Sitti, M., Yan, J.

In Robotics and Automation, 2000. Proceedings. ICRA’00. IEEE International Conference on, 2, pages: 1509-1516, 2000 (inproceedings)

pi

[BibTex]

[BibTex]

1999


no image
Engineering Support Vector Machine Kernels That Recognize Translation Initiation Sites in DNA

Zien, A., Rätsch, G., Mika, S., Schölkopf, B., Lemmen, C., Smola, A., Lengauer, T., Müller, K.

In German Conference on Bioinformatics (GCB 1999), October 1999 (inproceedings)

Abstract
In order to extract protein sequences from nucleotide sequences, it is an important step to recognize points from which regions encoding pro­ teins start, the so­called translation initiation sites (TIS). This can be modeled as a classification prob­ lem. We demonstrate the power of support vector machines (SVMs) for this task, and show how to suc­ cessfully incorporate biological prior knowledge by engineering an appropriate kernel function.

ei

Web [BibTex]

1999


Web [BibTex]


no image
Tele-touch feedback of surfaces at the micro/nano scale: Modeling and experiments

Sitti, M., Horighuchi, S., Hashimoto, H.

In Intelligent Robots and Systems, 1999. IROS’99. Proceedings. 1999 IEEE/RSJ International Conference on, 2, pages: 882-888, 1999 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Challenge to micro/nanomanipulation using atomic force microscope

Hashimoto, H., Sitti, M.

In Micromechatronics and Human Science, 1999. MHS’99. Proceedings of 1999 International Symposium on, pages: 35-42, 1999 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Visualization interface for AFM-based nano-manipulation

Horiguchi, S., Sitti, M., Hashimoto, H.

In Industrial Electronics, 1999. ISIE’99. Proceedings of the IEEE International Symposium on, 1, pages: 310-315, 1999 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Tele-nanorobotics 2-d manipulation of micro/nanoparticles using afm

Sitti, M., Horiguchi, S., Hashimoto, H.

In Advanced Intelligent Mechatronics, 1999. Proceedings. 1999 IEEE/ASME International Conference on, pages: 786-786, 1999 (inproceedings)

pi

[BibTex]

[BibTex]