Header logo is


2013


no image
Camera-specific Image Denoising

Schober, M.

Eberhard Karls Universität Tübingen, Germany, October 2013 (diplomathesis)

ei pn

PDF [BibTex]

2013


PDF [BibTex]


Thumb xl cover3
Statistics on Manifolds with Applications to Modeling Shape Deformations

Freifeld, O.

Brown University, August 2013 (phdthesis)

Abstract
Statistical models of non-rigid deformable shape have wide application in many fi elds, including computer vision, computer graphics, and biometry. We show that shape deformations are well represented through nonlinear manifolds that are also matrix Lie groups. These pattern-theoretic representations lead to several advantages over other alternatives, including a principled measure of shape dissimilarity and a natural way to compose deformations. Moreover, they enable building models using statistics on manifolds. Consequently, such models are superior to those based on Euclidean representations. We demonstrate this by modeling 2D and 3D human body shape. Shape deformations are only one example of manifold-valued data. More generally, in many computer-vision and machine-learning problems, nonlinear manifold representations arise naturally and provide a powerful alternative to Euclidean representations. Statistics is traditionally concerned with data in a Euclidean space, relying on the linear structure and the distances associated with such a space; this renders it inappropriate for nonlinear spaces. Statistics can, however, be generalized to nonlinear manifolds. Moreover, by respecting the underlying geometry, the statistical models result in not only more e ffective analysis but also consistent synthesis. We go beyond previous work on statistics on manifolds by showing how, even on these curved spaces, problems related to modeling a class from scarce data can be dealt with by leveraging information from related classes residing in di fferent regions of the space. We show the usefulness of our approach with 3D shape deformations. To summarize our main contributions: 1) We de fine a new 2D articulated model -- more expressive than traditional ones -- of deformable human shape that factors body-shape, pose, and camera variations. Its high realism is obtained from training data generated from a detailed 3D model. 2) We defi ne a new manifold-based representation of 3D shape deformations that yields statistical deformable-template models that are better than the current state-of-the- art. 3) We generalize a transfer learning idea from Euclidean spaces to Riemannian manifolds. This work demonstrates the value of modeling manifold-valued data and their statistics explicitly on the manifold. Specifi cally, the methods here provide new tools for shape analysis.

ps

pdf Project Page [BibTex]


no image
Coupling between spiking activity and beta band spatio-temporal patterns in the macaque PFC

Safavi, S., Panagiotaropoulos, T., Kapoor, V., Logothetis, N., Besserve, M.

43rd Annual Meeting of the Society for Neuroscience (Neuroscience), 2013 (poster)

ei

[BibTex]

[BibTex]


no image
Gaussian Process Vine Copulas for Multivariate Dependence

Lopez-Paz, D., Hernandez-Lobato, J., Ghahramani, Z.

International Conference on Machine Learning (ICML), 2013 (poster)

ei

PDF [BibTex]

PDF [BibTex]


no image
Domain Generalization via Invariant Feature Representation

Muandet, K., Balduzzi, D., Schölkopf, B.

30th International Conference on Machine Learning (ICML2013), 2013 (poster)

ei

PDF [BibTex]

PDF [BibTex]


no image
Analyzing locking of spikes to spatio-temporal patterns in the macaque prefrontal cortex

Safavi, S., Panagiotaropoulos, T., Kapoor, V., Logothetis, N., Besserve, M.

Bernstein Conference, 2013 (poster)

ei

DOI [BibTex]

DOI [BibTex]


no image
One-class Support Measure Machines for Group Anomaly Detection

Muandet, K., Schölkopf, B.

29th Conference on Uncertainty in Artificial Intelligence (UAI), 2013 (poster)

ei

PDF [BibTex]

PDF [BibTex]


no image
The Randomized Dependence Coefficient

Lopez-Paz, D., Hennig, P., Schölkopf, B.

Neural Information Processing Systems (NIPS), 2013 (poster)

ei pn

PDF [BibTex]

PDF [BibTex]


no image
Characterization of different types of sharp-wave ripple signatures in the CA1 of the macaque hippocampus

Ramirez-Villegas, J., Logothetis, N., Besserve, M.

4th German Neurophysiology PhD Meeting Networks, 2013 (poster)

ei

Web [BibTex]

Web [BibTex]


no image
Modelling and Learning Approaches to Image Denoising

Burger, HC.

Eberhard Karls Universität Tübingen, Germany, 2013 (phdthesis)

ei

[BibTex]

[BibTex]


no image
Linear mixed models for genome-wide association studies

Lippert, C.

University of Tübingen, Germany, 2013 (phdthesis)

ei

[BibTex]

[BibTex]


no image
Modeling and Learning Complex Motor Tasks: A case study on Robot Table Tennis

Mülling, K.

Technical University Darmstadt, Germany, 2013 (phdthesis)

ei

[BibTex]

[BibTex]


no image
Intention Inference and Decision Making with Hierarchical Gaussian Process Dynamics Models

Wang, Z.

Technical University Darmstadt, Germany, 2013 (phdthesis)

ei

[BibTex]


no image
Quantum kinetic theory for demagnetization after femtosecond laser pulses

Teeny, N.

Universität Stuttgart, Stuttgart, 2013 (mastersthesis)

mms

[BibTex]

[BibTex]

2006


no image
Some observations on the pedestal effect or dipper function

Henning, B., Wichmann, F.

Journal of Vision, 6(13):50, 2006 Fall Vision Meeting of the Optical Society of America, December 2006 (poster)

Abstract
The pedestal effect is the large improvement in the detectabilty of a sinusoidal “signal” grating observed when the signal is added to a masking or “pedestal” grating of the same spatial frequency, orientation, and phase. We measured the pedestal effect in both broadband and notched noise - noise from which a 1.5-octave band centred on the signal frequency had been removed. Although the pedestal effect persists in broadband noise, it almost disappears in the notched noise. Furthermore, the pedestal effect is substantial when either high- or low-pass masking noise is used. We conclude that the pedestal effect in the absence of notched noise results principally from the use of information derived from channels with peak sensitivities at spatial frequencies different from that of the signal and pedestal. The spatial-frequency components of the notched noise above and below the spatial frequency of the signal and pedestal prevent the use of information about changes in contrast carried in channels tuned to spatial frequencies that are very much different from that of the signal and pedestal. Thus the pedestal or dipper effect measured without notched noise is not a characteristic of individual spatial-frequency tuned channels.

ei

Web DOI [BibTex]

2006


Web DOI [BibTex]


no image
Optimizing Spatial Filters for BCI: Margin- and Evidence-Maximization Approaches

Farquhar, J., Hill, N., Schölkopf, B.

Challenging Brain-Computer Interfaces: MAIA Workshop 2006, pages: 1, November 2006 (poster)

Abstract
We present easy-to-use alternatives to the often-used two-stage Common Spatial Pattern + classifier approach for spatial filtering and classification of Event-Related Desychnronization signals in BCI. We report two algorithms that aim to optimize the spatial filters according to a criterion more directly related to the ability of the algorithms to generalize to unseen data. Both are based upon the idea of treating the spatial filter coefficients as hyperparameters of a kernel or covariance function. We then optimize these hyper-parameters directly along side the normal classifier parameters with respect to our chosen learning objective function. The two objectives considered are margin maximization as used in Support-Vector Machines and the evidence maximization framework used in Gaussian Processes. Our experiments assessed generalization error as a function of the number of training points used, on 9 BCI competition data sets and 5 offline motor imagery data sets measured in Tubingen. Both our approaches sho w consistent improvements relative to the commonly used CSP+linear classifier combination. Strikingly, the improvement is most significant in the higher noise cases, when either few trails are used for training, or with the most poorly performing subjects. This a reversal of the usual "rich get richer" effect in the development of CSP extensions, which tend to perform best when the signal is strong enough to accurately find their additional parameters. This makes our approach particularly suitable for clinical application where high levels of noise are to be expected.

ei

PDF PDF [BibTex]

PDF PDF [BibTex]


no image
Learning Eye Movements

Kienzle, W., Wichmann, F., Schölkopf, B., Franz, M.

Sensory Coding And The Natural Environment, 2006, pages: 1, September 2006 (poster)

Abstract
The human visual system samples images through saccadic eye movements which rapidly change the point of fixation. Although the selection of eye movement targets depends on numerous top-down mechanisms, a number of recent studies have shown that low-level image features such as local contrast or edges play an important role. These studies typically used predefined image features which were afterwards experimentally verified. Here, we follow a complementary approach: instead of testing a set of candidate image features, we infer these hypotheses from the data, using methods from statistical learning. To this end, we train a non-linear classifier on fixated vs. randomly selected image patches without making any physiological assumptions. The resulting classifier can be essentially characterized by a nonlinear combination of two center-surround receptive fields. We find that the prediction performance of this simple model on our eye movement data is indistinguishable from the physiologically motivated model of Itti & Koch (2000) which is far more complex. In particular, we obtain a comparable performance without using any multi-scale representations, long-range interactions or oriented image features.

ei

Web [BibTex]

Web [BibTex]


no image
Classification of natural scenes: Critical features revisited

Drewes, J., Wichmann, F., Gegenfurtner, K.

Journal of Vision, 6(6):561, 6th Annual Meeting of the Vision Sciences Society (VSS), June 2006 (poster)

Abstract
Human observers are capable of detecting animals within novel natural scenes with remarkable speed and accuracy. Despite the seeming complexity of such decisions it has been hypothesized that a simple global image feature, the relative abundance of high spatial frequencies at certain orientations, could underly such fast image classification (A. Torralba & A. Oliva, Network: Comput. Neural Syst., 2003). We successfully used linear discriminant analysis to classify a set of 11.000 images into “animal” and “non-animal” images based on their individual amplitude spectra only (Drewes, Wichmann, Gegenfurtner VSS 2005). We proceeded to sort the images based on the performance of our classifier, retaining only the best and worst classified 400 images (“best animals”, “best distractors” and “worst animals”, “worst distractors”). We used a Go/No-go paradigm to evaluate human performance on this subset of our images. Both reaction time and proportion of correctly classified images showed a significant effect of classification difficulty. Images more easily classified by our algorithm were also classified faster and better by humans, as predicted by the Torralba & Oliva hypothesis. We then equated the amplitude spectra of the 400 images, which, by design, reduced algorithmic performance to chance whereas human performance was only slightly reduced (cf. Wichmann, Rosas, Gegenfurtner, VSS 2005). Most importantly, the same images as before were still classified better and faster, suggesting that even in the original condition features other than specifics of the amplitude spectrum made particular images easy to classify, clearly at odds with the Torralba & Oliva hypothesis.

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
The pedestal effect is caused by off-frequency looking, not nonlinear transduction or contrast gain-control

Wichmann, F., Henning, B.

Journal of Vision, 6(6):194, 6th Annual Meeting of the Vision Sciences Society (VSS), June 2006 (poster)

Abstract
The pedestal or dipper effect is the large improvement in the detectabilty of a sinusoidal grating observed when the signal is added to a pedestal or masking grating having the signal‘s spatial frequency, orientation, and phase. The effect is largest with pedestal contrasts just above the ‘threshold‘ in the absence of a pedestal. We measured the pedestal effect in both broadband and notched masking noise---noise from which a 1.5- octave band centered on the signal and pedestal frequency had been removed. The pedestal effect persists in broadband noise, but almost disappears with notched noise. The spatial-frequency components of the notched noise that lie above and below the spatial frequency of the signal and pedestal prevent the use of information about changes in contrast carried in channels tuned to spatial frequencies that are very much different from that of the signal and pedestal. We conclude that the pedestal effect in the absence of notched noise results principally from the use of information derived from channels with peak sensitivities at spatial frequencies that are different from that of the signal and pedestal. Thus the pedestal or dipper effect is not a characteristic of individual spatial-frequency tuned channels.

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
Kernel PCA for Image Compression

Huhle, B.

Biologische Kybernetik, Eberhard-Karls-Universität, Tübingen, Germany, April 2006 (diplomathesis)

ei

PDF [BibTex]

PDF [BibTex]


no image
The Pedestal Effect is Caused by Off-Frequency Looking, not Nonlinear Transduction or Contrast Gain-Control

Wichmann, F., Henning, G.

9, pages: 174, 9th T{\"u}bingen Perception Conference (TWK), March 2006 (poster)

Abstract
The pedestal or dipper effect is the large improvement in the detectability of a sinusoidal grating observed when the signal is added to a pedestal or masking grating having the signal‘s spatial frequency, orientation, and phase. The effect is largest with pedestal contrasts just above the ‘threshold’ in the absence of a pedestal. We measured the pedestal effect in both broadband and notched masking noise---noise from which a 1.5-octave band centered on the signal and pedestal frequency had been removed. The pedestal effect persists in broadband noise, but almost disappears with notched noise. The spatial-frequency components of the notched noise that lie above and below the spatial frequency of the signal and pedestal prevent the use of information about changes in contrast carried in channels tuned to spatial frequencies that are very much different from that of the signal and pedestal. We conclude that the pedestal effect in the absence of notched noise results principally from the use of information derived from channels with peak sensitivities at spatial frequencies that are different from that of the signal and pedestal. Thus the pedestal or dipper effect is not a characteristic of individual spatial-frequency tuned channels.

ei

Web [BibTex]

Web [BibTex]


no image
Gaussian Process Models for Robust Regression, Classification, and Reinforcement Learning

Kuss, M.

Biologische Kybernetik, Technische Universität Darmstadt, Darmstadt, Germany, March 2006, passed with distinction, published online (phdthesis)

ei

PDF [BibTex]

PDF [BibTex]


no image
Classification of Natural Scenes: Critical Features Revisited

Drewes, J., Wichmann, F., Gegenfurtner, K.

9, pages: 92, 9th T{\"u}bingen Perception Conference (TWK), March 2006 (poster)

Abstract
Human observers are capable of detecting animals within novel natural scenes with remarkable speed and accuracy. Despite the seeming complexity of such decisions it has been hypothesized that a simple global image feature, the relative abundance of high spatial frequencies at certain orientations, could underly such fast image classification [1]. We successfully used linear discriminant analysis to classify a set of 11.000 images into “animal” and “non-animal” images based on their individual amplitude spectra only [2]. We proceeded to sort the images based on the performance of our classifier, retaining only the best and worst classified 400 images ("best animals", "best distractors" and "worst animals", "worst distractors"). We used a Go/No-go paradigm to evaluate human performance on this subset of our images. Both reaction time and proportion of correctly classified images showed a significant effect of classification difficulty. Images more easily classified by our algorithm were also classified faster and better by humans, as predicted by the Torralba & Oliva hypothesis. We then equated the amplitude spectra of the 400 images, which, by design, reduced algorithmic performance to chance whereas human performance was only slightly reduced [3]. Most importantly, the same images as before were still classified better and faster, suggesting that even in the original condition features other than specifics of the amplitude spectrum made particular images easy to classify, clearly at odds with the Torralba & Oliva hypothesis.

ei

Web [BibTex]

Web [BibTex]


no image
Factorial Coding of Natural Images: How Effective are Linear Models in Removing Higher-Order Dependencies?

Bethge, M.

9, pages: 90, 9th T{\"u}bingen Perception Conference (TWK), March 2006 (poster)

Abstract
The performance of unsupervised learning models for natural images is evaluated quantitatively by means of information theory. We estimate the gain in statistical independence (the multi-information reduction) achieved with independent component analysis (ICA), principal component analysis (PCA), zero-phase whitening, and predictive coding. Predictive coding is translated into the transform coding framework, where it can be characterized by the constraint of a triangular filter matrix. A randomly sampled whitening basis and the Haar wavelet are included into the comparison as well. The comparison of all these methods is carried out for different patch sizes, ranging from 2x2 to 16x16 pixels. In spite of large differences in the shape of the basis functions, we find only small differences in the multi-information between all decorrelation transforms (5% or less) for all patch sizes. Among the second-order methods, PCA is optimal for small patch sizes and predictive coding performs best for large patch sizes. The extra gain achieved with ICA is always less than 2%. In conclusion, the `edge filters‘ found with ICA lead only to a surprisingly small improvement in terms of its actual objective.

ei

Web [BibTex]

Web [BibTex]


no image
Classification of natural scenes: critical features revisited

Drewes, J., Wichmann, F., Gegenfurtner, K.

Experimentelle Psychologie: Beitr{\"a}ge zur 48. Tagung experimentell arbeitender Psychologen, 48, pages: 251, 2006 (poster)

ei

[BibTex]

[BibTex]


no image
Texture and haptic cues in slant discrimination: combination is sensitive to reliability but not statistically optimal

Rosas, P., Wagemans, J., Ernst, M., Wichmann, F.

Beitr{\"a}ge zur 48. Tagung experimentell arbeitender Psychologen (TeaP 2006), 48, pages: 80, 2006 (poster)

ei

[BibTex]

[BibTex]


no image
Ähnlichkeitsmasse in Modellen zur Kategorienbildung

Jäkel, F., Wichmann, F.

Experimentelle Psychologie: Beitr{\"a}ge zur 48. Tagung experimentell arbeitender Psychologen, 48, pages: 223, 2006 (poster)

ei

[BibTex]

[BibTex]


no image
The pedestal effect is caused by off-frequency looking, not nonlinear transduction or contrast gain-control

Wichmann, F., Henning, B.

Experimentelle Psychologie: Beitr{\"a}ge zur 48. Tagung experimentell arbeitender Psychologen, 48, pages: 205, 2006 (poster)

ei

[BibTex]

[BibTex]


no image
Elektronentheorie der magnetischen EXAFS

Gü\ssmann, M.

Universität Stuttgart, Stuttgart, 2006 (mastersthesis)

mms

[BibTex]

[BibTex]


no image
Elektronenspektroskopie an Übergangsmetallclustern

He\ssler, M.

Bayerische Julius-Maximilians-Universität, Würzburg, 2006 (phdthesis)

mms

[BibTex]

[BibTex]


no image
Hydrogen storage by physisorption on porous materials

Panella, B.

Universität Stuttgart, Stuttgart, 2006 (phdthesis)

mms

link (url) [BibTex]

link (url) [BibTex]


no image
Theory of magnetic x-ray reflectometry on the Co2Pt7 multilayer system

Martosiswoyo, L.

Universität Stuttgart, Stuttgart, 2006 (mastersthesis)

mms

[BibTex]

[BibTex]


no image
Magnetischer zirkularer Röntgendichroismus an Übergangsmetalloxiden

Lafkioti, M.

Universität Stuttgart, Stuttgart, 2006 (mastersthesis)

mms

[BibTex]

[BibTex]


no image
Contributions to the theory of x-ray magnetic dichroism

Dörfler, F.

Universität Stuttgart, Stuttgart, 2006 (mastersthesis)

mms

[BibTex]

[BibTex]