Header logo is


2017


no image
Improving performance of linear field generation with multi-coil setup by optimizing coils position

Aghaeifar, A., Loktyushin, A., Eschelbach, M., Scheffler, K.

Magnetic Resonance Materials in Physics, Biology and Medicine, 30(Supplement 1):S259, 34th Annual Scientific Meeting of the European Society for Magnetic Resonance in Medicine and Biology (ESMRMB), October 2017 (poster)

ei

link (url) DOI [BibTex]

2017


link (url) DOI [BibTex]


Thumb xl image  1
Human Shape Estimation using Statistical Body Models

Loper, M. M.

University of Tübingen, May 2017 (thesis)

Abstract
Human body estimation methods transform real-world observations into predictions about human body state. These estimation methods benefit a variety of health, entertainment, clothing, and ergonomics applications. State may include pose, overall body shape, and appearance. Body state estimation is underconstrained by observations; ambiguity presents itself both in the form of missing data within observations, and also in the form of unknown correspondences between observations. We address this challenge with the use of a statistical body model: a data-driven virtual human. This helps resolve ambiguity in two ways. First, it fills in missing data, meaning that incomplete observations still result in complete shape estimates. Second, the model provides a statistically-motivated penalty for unlikely states, which enables more plausible body shape estimates. Body state inference requires more than a body model; we therefore build obser- vation models whose output is compared with real observations. In this thesis, body state is estimated from three types of observations: 3D motion capture markers, depth and color images, and high-resolution 3D scans. In each case, a forward process is proposed which simulates observations. By comparing observations to the results of the forward process, state can be adjusted to minimize the difference between simulated and observed data. We use gradient-based methods because they are critical to the precise estimation of state with a large number of parameters. The contributions of this work include three parts. First, we propose a method for the estimation of body shape, nonrigid deformation, and pose from 3D markers. Second, we present a concise approach to differentiating through the rendering process, with application to body shape estimation. And finally, we present a statistical body model trained from human body scans, with state-of-the-art fidelity, good runtime performance, and compatibility with existing animation packages.

ps

Official Version [BibTex]


no image
Estimating B0 inhomogeneities with projection FID navigator readouts

Loktyushin, A., Ehses, P., Schölkopf, B., Scheffler, K.

25th Annual Meeting and Exhibition of the International Society for Magnetic Resonance in Medicine (ISMRM), April 2017 (poster)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
Image Quality Improvement by Applying Retrospective Motion Correction on Quantitative Susceptibility Mapping and R2*

Feng, X., Loktyushin, A., Deistung, A., Reichenbach, J.

25th Annual Meeting and Exhibition of the International Society for Magnetic Resonance in Medicine (ISMRM), April 2017 (poster)

ei

link (url) [BibTex]

link (url) [BibTex]


Thumb xl phd thesis teaser
Learning Inference Models for Computer Vision

Jampani, V.

MPI for Intelligent Systems and University of Tübingen, 2017 (phdthesis)

Abstract
Computer vision can be understood as the ability to perform 'inference' on image data. Breakthroughs in computer vision technology are often marked by advances in inference techniques, as even the model design is often dictated by the complexity of inference in them. This thesis proposes learning based inference schemes and demonstrates applications in computer vision. We propose techniques for inference in both generative and discriminative computer vision models. Despite their intuitive appeal, the use of generative models in vision is hampered by the difficulty of posterior inference, which is often too complex or too slow to be practical. We propose techniques for improving inference in two widely used techniques: Markov Chain Monte Carlo (MCMC) sampling and message-passing inference. Our inference strategy is to learn separate discriminative models that assist Bayesian inference in a generative model. Experiments on a range of generative vision models show that the proposed techniques accelerate the inference process and/or converge to better solutions. A main complication in the design of discriminative models is the inclusion of prior knowledge in a principled way. For better inference in discriminative models, we propose techniques that modify the original model itself, as inference is simple evaluation of the model. We concentrate on convolutional neural network (CNN) models and propose a generalization of standard spatial convolutions, which are the basic building blocks of CNN architectures, to bilateral convolutions. First, we generalize the existing use of bilateral filters and then propose new neural network architectures with learnable bilateral filters, which we call `Bilateral Neural Networks'. We show how the bilateral filtering modules can be used for modifying existing CNN architectures for better image segmentation and propose a neural network approach for temporal information propagation in videos. Experiments demonstrate the potential of the proposed bilateral networks on a wide range of vision tasks and datasets. In summary, we propose learning based techniques for better inference in several computer vision models ranging from inverse graphics to freely parameterized neural networks. In generative vision models, our inference techniques alleviate some of the crucial hurdles in Bayesian posterior inference, paving new ways for the use of model based machine learning in vision. In discriminative CNN models, the proposed filter generalizations aid in the design of new neural network architectures that can handle sparse high-dimensional data as well as provide a way for incorporating prior knowledge into CNNs.

ps

pdf [BibTex]

pdf [BibTex]


no image
Development and Evaluation of a Portable BCI System for Remote Data Acquisition

Emde, T.

Graduate School of Neural Information Processing, Eberhard Karls Universität Tübingen, Germany, 2017 (mastersthesis)

ei

[BibTex]

[BibTex]


no image
Brain-Computer Interfaces for patients with Amyotrophic Lateral Sclerosis

Fomina, T.

Eberhard Karls Universität Tübingen, Germany, 2017 (phdthesis)

ei

[BibTex]

[BibTex]


no image
Generalized phase locking analysis of electrophysiology data

Safavi, S., Panagiotaropoulos, T., Kapoor, V., Logothetis, N. K., Besserve, M.

ESI Systems Neuroscience Conference (ESI-SyNC 2017): Principles of Structural and Functional Connectivity, 2017 (poster)

ei

[BibTex]

[BibTex]


no image
Causal models for decision making via integrative inference

Geiger, P.

University of Stuttgart, Germany, 2017 (phdthesis)

ei

[BibTex]

[BibTex]


Thumb xl coverhand wilson
Capturing Hand-Object Interaction and Reconstruction of Manipulated Objects

Tzionas, D.

University of Bonn, 2017 (phdthesis)

Abstract
Hand motion capture with an RGB-D sensor gained recently a lot of research attention, however, even most recent approaches focus on the case of a single isolated hand. We focus instead on hands that interact with other hands or with a rigid or articulated object. Our framework successfully captures motion in such scenarios by combining a generative model with discriminatively trained salient points, collision detection and physics simulation to achieve a low tracking error with physically plausible poses. All components are unified in a single objective function that can be optimized with standard optimization techniques. We initially assume a-priori knowledge of the object's shape and skeleton. In case of unknown object shape there are existing 3d reconstruction methods that capitalize on distinctive geometric or texture features. These methods though fail for textureless and highly symmetric objects like household articles, mechanical parts or toys. We show that extracting 3d hand motion for in-hand scanning effectively facilitates the reconstruction of such objects and we fuse the rich additional information of hands into a 3d reconstruction pipeline. Finally, although shape reconstruction is enough for rigid objects, there is a lack of tools that build rigged models of articulated objects that deform realistically using RGB-D data. We propose a method that creates a fully rigged model consisting of a watertight mesh, embedded skeleton and skinning weights by employing a combination of deformable mesh tracking, motion segmentation based on spectral clustering and skeletonization based on mean curvature flow.

ps

Thesis link (url) Project Page [BibTex]


Thumb xl screen shot 2018 02 08 at 1.12.35 pm
Evaluation of the passive dynamics of compliant legs with inertia

Györfi, B.

University of Applied Science Pforzheim, Germany, 2017 (mastersthesis)

dlg

[BibTex]

[BibTex]


no image
Learning Optimal Configurations for Modeling Frowning by Transcranial Electrical Stimulation

Sücker, K.

Graduate School of Neural Information Processing, Eberhard Karls Universität Tübingen, Germany, 2017 (mastersthesis)

ei

[BibTex]

[BibTex]


no image
Understanding FORC using synthetic micro-structured systems with variable coupling- and coercivefield distributions

Groß, Felix

Universität Stuttgart, Stuttgart, 2017 (mastersthesis)

mms

[BibTex]


no image
Adsorption von Wasserstoffmolekülen in nanoporösen Gerüststrukturen

Kotzur, Nadine

Universität Stuttgart, Stuttgart, 2017 (mastersthesis)

mms

[BibTex]

[BibTex]

2007


no image
MR-Based PET Attenuation Correction: Method and Validation

Hofmann, M., Steinke, F., Scheel, V., Charpiat, G., Brady, M., Schölkopf, B., Pichler, B.

2007 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS-MIC 2007), 2007(M16-6):1-2, November 2007 (poster)

Abstract
PET/MR combines the high soft tissue contrast of Magnetic Resonance Imaging (MRI) and the functional information of Positron Emission Tomography (PET). For quantitative PET information, correction of tissue photon attenuation is mandatory. Usually in conventional PET, the attenuation map is obtained from a transmission scan, which uses a rotating source, or from the CT scan in case of combined PET/CT. In the case of a PET/MR scanner, there is insufficient space for the rotating source and ideally one would want to calculate the attenuation map from the MR image instead. Since MR images provide information about proton density of the different tissue types, it is not trivial to use this data for PET attenuation correction. We present a method for predicting the PET attenuation map from a given the MR image, using a combination of atlas-registration and recognition of local patterns. Using "leave one out cross validation" we show on a database of 16 MR-CT image pairs that our method reliably allows estimating the CT image from the MR image. Subsequently, as in PET/CT, the PET attenuation map can be predicted from the CT image. On an additional dataset of MR/CT/PET triplets we quantitatively validate that our approach allows PET quantification with an error that is smaller than what would be clinically significant. We demonstrate our approach on T1-weighted human brain scans. However, the presented methods are more general and current research focuses on applying the established methods to human whole body PET/MRI applications.

ei

PDF PDF [BibTex]

2007


PDF PDF [BibTex]


no image
Estimating receptive fields without spike-triggering

Macke, J., Zeck, G., Bethge, M.

37th annual Meeting of the Society for Neuroscience (Neuroscience 2007), 37(768.1):1, November 2007 (poster)

ei

Web [BibTex]

Web [BibTex]


no image
Evaluation of Deformable Registration Methods for MR-CT Atlas Alignment

Scheel, V., Hofmann, M., Rehfeld, N., Judenhofer, M., Claussen, C., Pichler, B.

2007 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS-MIC 2007), 2007(M13-121):1, November 2007 (poster)

Abstract
Deformable registration methods are essential for multimodality imaging. Many different methods exist but due to the complexity of the deformed images a direct comparison of the methods is difficult. One particular application that requires high accuracy registration of MR-CT images is atlas-based attenuation correction for PET/MR. We compare four deformable registration algorithms for 3D image data included in the Open Source "National Library of Medicine Insight Segmentation and Registration Toolkit" (ITK). An interactive landmark based registration using MiraView (Siemens) has been used as gold standard. The automatic algorithms provided by ITK are based on the metrics Mattes mutual information as well as on normalized mutual information. The transformations are calculated by interpolating over a uniform B-Spline grid laying over the image to be warped. The algorithms were tested on head images from 10 subjects. We implemented a measure which segments head interior bone and air based on the CT images and l ow intensity classes of corresponding MRI images. The segmentation of bone is performed by individually calculating the lowest Hounsfield unit threshold for each CT image. The compromise is made by quantifying the number of overlapping voxels of the remaining structures. We show that the algorithms provided by ITK achieve similar or better accuracy than the time-consuming interactive landmark based registration. Thus, ITK provides an ideal platform to generate accurately fused datasets from different modalities, required for example for building training datasets for Atlas-based attenuation correction.

ei

PDF [BibTex]

PDF [BibTex]


no image
Some Theoretical Aspects of Human Categorization Behavior: Similarity and Generalization

Jäkel, F.

Biologische Kybernetik, Eberhard-Karls-Universität Tübingen, Tübingen, Germany, November 2007, passed with "ausgezeichnet", summa cum laude, published online (phdthesis)

ei

PDF [BibTex]

PDF [BibTex]


no image
Statistical Learning Theory Approaches to Clustering

Jegelka, S.

Biologische Kybernetik, Eberhard-Karls-Universität Tübingen, Tübingen, Germany, November 2007 (diplomathesis)

ei

PDF [BibTex]

PDF [BibTex]


no image
A time/frequency decomposition of information transmission by LFPs and spikes in the primary visual cortex

Belitski, A., Gretton, A., Magri, C., Murayama, Y., Montemurro, M., Logothetis, N., Panzeri, S.

37th Annual Meeting of the Society for Neuroscience (Neuroscience 2007), 37, pages: 1, November 2007 (poster)

ei

Web [BibTex]

Web [BibTex]


no image
Mining expression-dependent modules in the human interaction network

Georgii, E., Dietmann, S., Uno, T., Pagel, P., Tsuda, K.

BMC Bioinformatics, 8(Suppl. 8):S4, November 2007 (poster)

ei

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
A Hilbert Space Embedding for Distributions

Smola, A., Gretton, A., Song, L., Schölkopf, B.

Proceedings of the 10th International Conference on Discovery Science (DS 2007), 10, pages: 40-41, October 2007 (poster)

Abstract
While kernel methods are the basis of many popular techniques in supervised learning, they are less commonly used in testing, estimation, and analysis of probability distributions, where information theoretic approaches rule the roost. However it becomes difficult to estimate mutual information or entropy if the data are high dimensional.

ei

PDF PDF DOI [BibTex]

PDF PDF DOI [BibTex]


no image
Studying the effects of noise correlations on population coding using a sampling method

Ecker, A., Berens, P., Bethge, M., Logothetis, N., Tolias, A.

Neural Coding, Computation and Dynamics (NCCD 07), 1, pages: 21, September 2007 (poster)

ei

PDF [BibTex]

PDF [BibTex]


no image
Near-Maximum Entropy Models for Binary Neural Representations of Natural Images

Berens, P., Bethge, M.

Neural Coding, Computation and Dynamics (NCCD 07), 1, pages: 19, September 2007 (poster)

Abstract
Maximum entropy analysis of binary variables provides an elegant way for studying the role of pairwise correlations in neural populations. Unfortunately, these approaches suffer from their poor scalability to high dimensions. In sensory coding, however, high-dimensional data is ubiquitous. Here, we introduce a new approach using a near-maximum entropy model, that makes this type of analysis feasible for very high-dimensional data---the model parameters can be derived in closed form and sampling is easy. We demonstrate its usefulness by studying a simple neural representation model of natural images. For the first time, we are able to directly compare predictions from a pairwise maximum entropy model not only in small groups of neurons, but also in larger populations of more than thousand units. Our results indicate that in such larger networks interactions exist that are not predicted by pairwise correlations, despite the fact that pairwise correlations explain the lower-dimensional marginal statistics extrem ely well up to the limit of dimensionality where estimation of the full joint distribution is feasible.

ei

PDF [BibTex]

PDF [BibTex]


no image
Error Correcting Codes for the P300 Visual Speller

Biessmann, F.

Biologische Kybernetik, Eberhard-Karls-Universität Tübingen, Tübingen, Germany, July 2007 (diplomathesis)

Abstract
The aim of brain-computer interface (BCI) research is to establish a communication system based on intentional modulation of brain activity. This is accomplished by classifying patterns of brain ac- tivity, volitionally induced by the user. The BCI presented in this study is based on a classical paradigm as proposed by (Farwell and Donchin, 1988), the P300 visual speller. Recording electroencephalo- grams (EEG) from the scalp while presenting letters successively to the user, the speller can infer from the brain signal which letter the user was focussing on. Since EEG recordings are noisy, usually many repetitions are needed to detect the correct letter. The focus of this study was to improve the accuracy of the visual speller applying some basic principles from information theory: Stimulus sequences of the speller have been modified into error-correcting codes. Additionally a language model was incorporated into the probabilistic letter de- coder. Classification of single EEG epochs was less accurate using error correcting codes. However, the novel code could compensate for that such that overall, letter accuracies were as high as or even higher than for classical stimulus codes. In particular at high noise levels, error-correcting decoding achieved higher letter accuracies.

ei

PDF [BibTex]

PDF [BibTex]


no image
Learning the Influence of Spatio-Temporal Variations in Local Image Structure on Visual Saliency

Kienzle, W., Wichmann, F., Schölkopf, B., Franz, M.

10th T{\"u}binger Wahrnehmungskonferenz (TWK 2007), 10, pages: 1, July 2007 (poster)

Abstract
Computational models for bottom-up visual attention traditionally consist of a bank of Gabor-like or Difference-of-Gaussians filters and a nonlinear combination scheme which combines the filter responses into a real-valued saliency measure [1]. Recently it was shown that a standard machine learning algorithm can be used to derive a saliency model from human eye movement data with a very small number of additional assumptions. The learned model is much simpler than previous models, but nevertheless has state-of-the-art prediction performance [2]. A central result from this study is that DoG-like center-surround filters emerge as the unique solution to optimizing the predictivity of the model. Here we extend the learning method to the temporal domain. While the previous model [2] predicts visual saliency based on local pixel intensities in a static image, our model also takes into account temporal intensity variations. We find that the learned model responds strongly to temporal intensity changes ocurring 200-250ms before a saccade is initiated. This delay coincides with the typical saccadic latencies, indicating that the learning algorithm has extracted a meaningful statistic from the training data. In addition, we show that the model correctly predicts a significant proportion of human eye movements on previously unseen test data.

ei

Web [BibTex]

Web [BibTex]


no image
Nonparametric Bayesian Discrete Latent Variable Models for Unsupervised Learning

Görür, D.

Biologische Kybernetik, Technische Universität Berlin, Berlin, Germany, April 2007, published online (phdthesis)

ei

PDF PDF [BibTex]

PDF PDF [BibTex]


no image
Better Codes for the P300 Visual Speller

Biessmann, F., Hill, N., Farquhar, J., Schölkopf, B.

G{\"o}ttingen Meeting of the German Neuroscience Society, 7, pages: 123, March 2007 (poster)

ei

PDF [BibTex]

PDF [BibTex]


no image
Do We Know What the Early Visual System Computes?

Bethge, M., Kayser, C.

31st G{\"o}ttingen Neurobiology Conference, 31, pages: 352, March 2007 (poster)

Abstract
Decades of research provided much data and insights into the mechanisms of the early visual system. Currently, however, there is great controversy on whether these findings can provide us with a thorough functional understanding of what the early visual system does, or formulated differently, of what it computes. At the Society for Neuroscience meeting 2005 in Washington, a symposium was held on the question "Do we know that the early visual system does", which was accompanied by a widely regarded publication in the Journal of Neuroscience. Yet, that discussion was rather specialized as it predominantly addressed the question of how well neural responses in retina, LGN, and cortex can be predicted from noise stimuli, but did not emphasize the question of whether we understand what the function of these early visual areas is. Here we will concentrate on this neuro-computational aspect of vision. Experts from neurobiology, psychophysics and computational neuroscience will present studies which approach this question from different viewpoints and promote a critical discussion of whether we actually understand what early areas contribute to the processing and perception of visual information.

ei

PDF [BibTex]

PDF [BibTex]


no image
Implicit Wiener Series for Estimating Nonlinear Receptive Fields

Franz, MO., Macke, JH., Saleem, A., Schultz, SR.

31st G{\"o}ttingen Neurobiology Conference, 31, pages: 1199, March 2007 (poster)

ei

PDF [BibTex]

PDF [BibTex]


no image
3D Reconstruction of Neural Circuits from Serial EM Images

Maack, N., Kapfer, C., Macke, J., Schölkopf, B., Denk, W., Borst, A.

31st G{\"o}ttingen Neurobiology Conference, 31, pages: 1195, March 2007 (poster)

ei

PDF [BibTex]

PDF [BibTex]


no image
Identifying temporal population codes in the retina using canonical correlation analysis

Bethge, M., Macke, J., Gerwinn, S., Zeck, G.

31st G{\"o}ttingen Neurobiology Conference, 31, pages: 359, March 2007 (poster)

ei

PDF PDF [BibTex]

PDF PDF [BibTex]


no image
Bayesian Neural System identification: error bars, receptive fields and neural couplings

Gerwinn, S., Seeger, M., Zeck, G., Bethge, M.

31st G{\"o}ttingen Neurobiology Conference, 31, pages: 360, March 2007 (poster)

ei

PDF PDF [BibTex]

PDF PDF [BibTex]


no image
Applications of Kernel Machines to Structured Data

Eichhorn, J.

Biologische Kybernetik, Technische Universität Berlin, Berlin, Germany, March 2007, passed with "sehr gut", published online (phdthesis)

ei

PDF [BibTex]

PDF [BibTex]


no image
A priori Knowledge from Non-Examples

Sinz, FH.

Biologische Kybernetik, Eberhard-Karls-Universität Tübingen, Tübingen, Germany, March 2007 (diplomathesis)

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
About the Triangle Inequality in Perceptual Spaces

Jäkel, F., Schölkopf, B., Wichmann, F.

Proceedings of the Computational and Systems Neuroscience Meeting 2007 (COSYNE), 4, pages: 308, February 2007 (poster)

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Center-surround filters emerge from optimizing predictivity in a free-viewing task

Kienzle, W., Wichmann, F., Schölkopf, B., Franz, M.

Proceedings of the Computational and Systems Neuroscience Meeting 2007 (COSYNE), 4, pages: 207, February 2007 (poster)

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Nonlinear Receptive Field Analysis: Making Kernel Methods Interpretable

Kienzle, W., Macke, J., Wichmann, F., Schölkopf, B., Franz, M.

Computational and Systems Neuroscience Meeting 2007 (COSYNE 2007), 4, pages: 16, February 2007 (poster)

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Estimating Population Receptive Fields in Space and Time

Macke, J., Zeck, G., Bethge, M.

Computational and Systems Neuroscience Meeting 2007 (COSYNE 2007), 4, pages: 44, February 2007 (poster)

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Machine Learning for Mass Production and Industrial Engineering

Pfingsten, T.

Biologische Kybernetik, Eberhard-Karls-Universität Tübingen, Tübingen, Germany, February 2007 (phdthesis)

ei

PDF [BibTex]

PDF [BibTex]


no image
Development of a Brain-Computer Interface Approach Based on Covert Attention to Tactile Stimuli

Raths, C.

University of Tübingen, Germany, University of Tübingen, Germany, January 2007 (diplomathesis)

ei

[BibTex]

[BibTex]


no image
A Machine Learning Approach for Estimating the Attenuation Map for a Combined PET/MR Scanner

Hofmann, M.

Biologische Kybernetik, Max-Planck Institute for Biological Cybernetics, Tübingen, Germany, 2007 (diplomathesis)

ei

[BibTex]

[BibTex]


no image
On the theory of magnetization dynamics of non-collinear spin systems in the s-d model

De Angeli, L.

Universität Stuttgart, Stuttgart, 2007 (mastersthesis)

mms

[BibTex]

[BibTex]


no image
Zur ab-initio Elektronentheorie des Magnetismus bei endlichen Temperaturen

Dietermann, F.

Universität Stuttgart, Stuttgart, 2007 (mastersthesis)

mms

[BibTex]

[BibTex]


no image
Röntgenzirkulardichroische Untersuchungen an ferromagnetischen verdünnten Halbleitersystemen

Tietze, T.

Universität Stuttgart, Stuttgart, 2007 (mastersthesis)

mms

[BibTex]

[BibTex]


no image
Low-dimensional Fe on vicinal Ir(997): Growth and magnetic properties

Kawwam, M.

Universität Stuttgart, Stuttgart, 2007 (mastersthesis)

mms

[BibTex]

[BibTex]