Scene Carving: Scene Consistent Image Retargeting

Alex Mansfield¹, Peter Gehler¹, Luc Van Gool²,³ and Carsten Rother³

¹Computer Vision Laboratory
ETH Zürich, Switzerland
²ESAT-PSI
KU Leuven, Belgium
³Microsoft Research
Cambridge, UK

Main Idea

Seam carving (1,2)

Seam carving iteratively removes seams of pixels, minimizing visual distortion using dynamic programming.

* Objects are protected (i.e. not distorted from original image)
* Other retargeting methods commonly use image warping, which can be effective but harder to optimize

Seam Carving

• Seam carving iteratively removes seams of pixels, minimizing visual distortion using dynamic programming
• Other retargeting methods commonly use image warping, which can be effective but harder to optimize

Scene Consistency

1) Objects are protected (i.e. not distorted from original image)
2) Object depth ordering is preserved as in the original image

Problem: higher order cliques needed to optimize for re-appearing pixels

#1 “Flat” formulation

Local constraints cannot protect objects

Graph construction with supernodes

• Graph cut formulation required (instead of dynamic programming)

Supernodes enforce scene consistency

• Green object supernode
• Blue object supernode

#2 Layered formulation (scene carving)

For all object positionings (combinatorial)

Find optimal seam in background (O.P.)

• Translate objects maintaining position or shifting 1 pixel left
 • Propose all combinations

• Seam carve in background using dynamic programming
 • Energy minimized when:
 • Fewest object pixels occluded
 • Least visual distortion created
 • Most hole pixels removed
 • Subject to constraint:
 • No hole pixels revealed

• Hierarchical speed-up
 • ~36x faster optimization

Our Goal

To extend seam carving to produce the best result subject to scene consistency

Results

Input image
Relative depth map
Scene carving
S.C. + Object Protection (1,2)

Variation of #2 minimizing visible distortion at each iteration

#2 Scene carving background layer

#1
#2

References

Time taken to produce our results with our Matlab/Mex implementation