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While grasping and manipulation in highly-controlled sce-
narios such as in factories is already possible, it remains
unclear how a robot can achieve this autonomously in real-
world scenarios that are characterized by a high degree of
uncertainty. This uncertainty can be attributed to partial and
noisy observations, a dynamic, constantly changing world
and inaccurate actuation. While these factors are mitigated in
industrial scenarios by introducing high amounts of structure,
such simplifications cannot be leveraged in the domains like
household or disaster relief scenarios where we would like
to push robot operation.

A popular approach towards building an autonomous and
robust manipulation system is through strong modularization
according to the classic concept of sense-plan-act: The per-
ception module provides the world model, in which a motion
planner finds an optimal, often collision-free path that is then
tracked by a stiff and accurate robot controller. Each module
is expected to provide next to perfect solutions that can then
be taken for granted by the subsequent modules. Information
often flows only in one direction without feedback taken
into account. This kind of approach is not robust against
the challenging conditions present in the aforementioned
scenarios. Recently, we have seen a more critical discussion
of robotic system architectures as a result of multiple robotic
challenges (e.g. the DARPA Robotics Challenge [[1] or the
Amazon Picking Challenge [2]) and the lessons learned
from these. For example, in [1], the authors found that
the areas of perception and autonomy pose one of the
most difficult challenges. While many teams used existing
software packages to solve different perception problems,
they lead to mediocre performance when integrated in an
entire system. This suggests that although these methods
may perform well on isolated benchmarks, it is non-trivial to
integrate them into an entire system. This may be due to the
input being very different from what they have been tested on
or different requirements on the robustness and noise-level
of the output. In [2], the authors discuss four different axes
that define a space in which robotic system architecture can
be characterized. These axes stretch from (i) modularity to
integration, (ii) generality to assumptions, (iii) computation
to embodiment and (iv) planning to feedback. In this abstract,
we propose an architecture that is mostly concerned with
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integration instead of classic modularization and continuous
feedback instead of planning.

For a robot to achieve manipulation behaviors under
sensing and actuation uncertainty in dynamic environments,
it needs to (i) continuously monitor the task-relevant parts of
the environment including its own state, (ii) continuously re-
plan to react to major changes in the environment and (iii)
locally adapt the planned motion to cope with uncertainty
and noise in the system.

Thus, we propose a system architecture that is organized
in multiple, interlocked perception-action loops that run at
different time scales. Each loop relies on some sensory feed-
back that may be provided at different rates and computes
the next best motion plan or control input. At the center
of our architecture is a motion optimizer that continuously
optimizes robot arm motions given the current robot state, a
target hand pose and some representation of the environment.
The current robot state, the target object pose and the world
representation are provided by real-time vision modules that
use images from a depth camera as input. The resulting
motion provides the reference for a compliant, low-level
controller of the robot arm and fingers. Altogether, this
system enables smooth and continuously adaptive motion
generation in cluttered, dynamic environments for complex
sequential manipulation tasks. Fig. |1| provides an overview
of the proposed system.

Object and Manipulator Tracking: The system tracks
simultaneously and in real-time both the object and manipu-
lator state with respect to a depth camera that is mounted on
the robot head. This provides a correct relative pose between
object and end-effector independently of inaccuracies in
hand-eye calibration. For object tracking, we rely on previous
work described in [3]]. It is robust to heavy occlusions, which
are common in the context of object manipulatio For
estimating the true robot arm configuration, we extend our
previous work [4] by fusing online the joint measurements
with the measurements from the depth camera. We deal with
inaccuracies in the kinematics and the calibration by adding
6 virtual joints between the robot head and the camera.
Both visual tracking methods run at the frame-rate of the
camera [3].

World Modeling: When planning the robot motion, the
system uses a geometric representation of the environment
to avoid collision with obstacles and potential untracked
objects or humans. This representation is essentially a signed

Code available at https://github.com/bayesian-object-tracking
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Overview of the proposed system, its components and their interconnection. While each component provides a contribution within the specific

field, this abstract focuses on the combination of those in multiple, interlocked perception-action loops which run at different time scales.

P

—,

Fig. 2. The continuous motion optimizer to plan trajectories for reaching,
grasping and placing the target object. Figures are showing an optimized
motion in a simple (top) and more cluttered (bottom) environment. Each
motion optimizes for the same target pose of the object.

Fig. 3. Grasping a heavy object without (left) and with (right) dynamic
model adaptation. Without the appropriate adaptation to the heavy payload,
the low-level controller cannot track the desired trajectory.

Fig. 4.

Online optimization of the reaching trajectory to a dynamically
moving object. This is enabled by the combination of the reactive planner
and visual tracking methods for continuously monitoring the target object
pose and current arm configuration.

distance function computed based on an occupancy voxel
grid. This map is extracted from depth images, cropped to
the robot workspace, removing the points corresponding to
the robot arm and the tracked object, and setting occluded
regions of space as occupied using ray casting. It is updated
at a rate of approximately 20Hz. An extension of this
representation can be found in [6]].

Motion optimization: Since the state estimate of the
robot and the target object configuration is constantly up-
dated by the vision system, we need a motion generation
module that is continuously adaptive. We use a multi-layered
continuous optimization framework to generate and maintain
a locally optimal motion policy for physically tracking
and approaching the object even as the object moves. We
decompose the grasp problem into multiple sequential task
states—approach, establish grasp, move object, release, and
retract—each governed by a separate finite-horizon motion
optimization process. The currently active motion task takes



as input the robot’s current state and the tracked relative
object location, and re-optimizes the motion at a rate of
approximately 10Hz using the Riemannian Motion Opti-
mization (RieMO) framework [7]. The optimized motion
policy is sent to control as a Linear Quadratic Regulator
built from a second-order approximation to the optimizer’s
objective around the locally optimal trajectory; these policies
are executed at the lower-level controllers rate of 1kHz in
real time. Each task state optimizer sends a prediction of
where it believes the policy will end up to the next task state
optimizer in the sequence, so all task states maintain realistic
policy predictions at all times that can be immediately
executed upon transition into the state without the overhead
of the initial policy optimization. This system enables smooth
and continuously adaptive motion generation in cluttered
environments for complex sequential manipulation problems.

Adaptive Inverse Dynamics Controller: Inverse dynam-
ics control is a good framework to achieve precise and
compliant tracking of acceleration policies generated by our
continuous motion generation framework. Global accurate
inverse dynamics models are difficult to obtain. Transparent
integration of additional end effector payload or heat depen-
dent system changes are even more complex to achieve. To
this end, we propose combining inverse dynamics learning
at different time scales, while achieving 1 kHz predictions
for real-time control, to move towards a hybrid approach of
task-specific offline and task-agnostic online modeling of the
inverse dynamics errors [8].

Experiments and Demonstrations: We tested the system
in three scenarios that demonstrate its general capability to
adapt to complex, dynamic and uncertain environments. It
achieves this through the combination of a reactive planner
with continuous monitoring of the environment and robust,
adaptive low-level control. As experimental platform we use
the Apollo robot at the MPI for Intelligent Systems consisting
of two Kuka LBR IV arms, two Barrett hands and an active
humanoid head by Sarcos.

First, we show how the planner can adapt the optimized
trajectory to a complex environment by taking the afore-
mentioned world model into account. This experiment is
illustrated in Fig.

Secondly, we show how the low-level controller can adapt
to heavy payloads when grasping objects. Despite an initially
incorrect dynamics models, the robot can accurately track
the desired trajectory after the adaptation. This experiment
is illustrated in Fig.

And lastly, we show how through a combination of visual
object and arm tracking and continuous optimization of the

reaching trajectory, the system can cope with dynamic target
objects. This experiment is illustrated in Fig. [}

Discussion: We propose a system architecture that
is capable of grasping and manipulation in uncertain and
dynamic environment by heavily relying on fast feedback at
different levels (planning and control) and integrating the
different levels in perception-action loops instead of in a
sequential architecture.

There are several points that could be addressed in the fu-
ture. First of all in the current architecture, mostly visual and
joint encoder feedback is taken into account. Manipulation
tasks are however heavily concerned with contact interaction.
This would benefit from taken haptic feedback from tactile
arrays, strain gauges or force/torque sensors into account in
the low-level controllers. Furthermore, the motion optimizer
is currently mostly concerned with avoiding collision prior
to grasping. It would be interesting to develop objective
functions and motion policies that take contact interaction
and exploitation of environmental constraints into account.
These have been proven to provide the key towards robust
grasping [9} 10, [11].
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