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Abstract. Most object detection systems consist of three stages. First,
a set of individual hypotheses for object locations is generated using
a proposal generating algorithm. Second, a classifier scores every gener-
ated hypothesis independently to obtain a multi-class prediction. Finally,
all scored hypotheses are filtered via a non-differentiable and decoupled
non-maximum suppression (NMS) post-processing step. In this paper,
we propose a filtering network (FNet), a method which replaces NMS
with a differentiable neural network that allows joint reasoning and re-
scoring of the generated set of hypotheses per image. This formulation
enables end-to-end training of the full object detection pipeline. First,
we demonstrate that FNet, a feed-forward network architecture, is able
to mimic NMS decisions, despite the sequential nature of NMS. We fur-
ther analyze NMS failures and propose a loss formulation that is better
aligned with the mean average precision (mAP) evaluation metric. We
evaluate FNet on several standard detection datasets. Results surpass
standard NMS on highly occluded settings of a synthetic overlapping
MNIST dataset and show competitive behavior on PascalVOC2007 and
KITTI detection benchmarks.

1 Introduction

Object detection is a fundamental structured prediction problem in computer
vision. This problem is regularly approached with three main processing steps.
In the first region proposal step a set of object hypotheses is generated using a
proposal algorithm. Second, a multi-class classifier scores each hypothesis inde-
pendent of all other hypotheses. We further refer to this as proposal classification
step. In a final filtering step the redundant hypotheses are suppressed via non-
maximum suppression (NMS).

The final filtering step is typically crucial in order to achieve good perfor-
mance, e.g. on PascalVOC this step doubles the performance. Nevertheless, to-
day NMS is still the main building block of current detection algorithms and is
used frequently in most modern detection algorithms [13,14]. Greedy sequential
NMS consists of the following heuristic steps: (i) sort proposals according to
their classification scores, (ii) start from the highest scoring hypothesis remove
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(a) Highly occluded instances (b) Parts of objects could be
would be suppressed not suppressed

Fig. 1: Examples of NMS failures.

all hypotheses with an overlap of a predefined threshold, (iii) repeat step (ii)
until all hypotheses have been selected or removed.

Speed, ease and effectiveness are strong positive points but NMS also has
some drawbacks:

— non-adaptive: The NMS decision rule is hard-coded using the proposal
classification scores, overlap ratio between hypotheses and a single predefined
threshold. Therefore, it does not allow to "reason-away” sets of bounding
boxes, a feature that would entail more complex and flexible features.

— non-differentiable: NMS is a greedy, sequential, heuristic procedure ap-
plied separately of bounding box scoring. It prevents the former classification
step from being jointly trained for the final loss function.

Figure 1 shows two common NMS failure cases: (a) suppressing nearby detections
of highly occluded objects and (b) not suppressing hypotheses representing only
parts of an object, i.e. the knee.

Recently, much progress has been made in improving the individual clas-
sification results [6,16] and fusing the proposal generation and classification
steps [12-14,16]. Yet, only a few approaches have been proposed in order to re-
place the final sequential NMS step, e.g., by [8]. However, the latter approach is
not differentiable since it uses NMS features and thus hinder end-to-end training
of the entire detection pipeline.

In this paper we aim to take some steps to turn the NMS process into a dif-
ferentiable building block that can be used in conjunction with any multi-class
classifier. There are some features of NMS that make this a challenging task and
we take some careful steps to not loose the performance of NMS while proposing
a replacement that can be used in a wider context. We propose to replace the
sequential NMS step with an additional feed-forward neural network that can
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Fig.2: FNet overview. Example on overlapping MNIST dataset, LeNet [10] is
used for independent hypotheses classification.

be stacked on top of any existing classifier. For the remainder of this paper, we
refer to this add-on as filtering network, or in short FNet. In contrast to the
existing classifier, the proposed FNet processes the proposal hypotheses jointly,
propagating errors to the individually processed hypotheses of the existing clas-
sifier.

Figure 2 depicts an overview of our proposed architecture, illustrated with
LeNet [10] as the basic per hypothesis classifier. The main idea for the FNet
structure is to use all information provided by all hypotheses in order to learn
context features which allow to filter hypotheses based on global knowledge. The
architecture is described in more detail in Section 4.

In order to verify ability of our approach to perform structured reasoning
over a set of hypotheses, we replace NMS by learning an approximate NMS
objective (Section 5.1). We demonstrate that FNet can reproduce NMS with
high accuracy. Since FNet is composed of standard neural network components
and has no sequential steps it achieves this performance while adding only a
minor computational overhead to the detection pipeline. We further introduce a
new loss function (net-loss), a sufficient objective to improve directly on the mean
average precision (mAP) objective [5]. Results are reported on three datasets.
Our experiments indicate that by leveraging features from the classifier networks,
we are able to surpass NMS performance on a synthetic overlapping MNIST
(oMNIST) dataset while being on par on KITTI and PascalVOC2007.

Thus, in summary the main contribution of this work is to replace NMS with
a simple fully differentiable feed-forward network. FNet is is independent of the
number of hypotheses, allows to make decisions over a set of hypotheses, and
can be stacked on top of pre-trained object detection pipelines.

FNet is implemented in TensorFlow [1]. Just as traditional NMS post-processing,
it can be easily combined with any existing object detection model.

final n class scores
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2 Related work

There are two interconnected streams of research related to our approach in the
literature: the first one aims to replace NMS with something more flexible, while
the second one concentrates on building an end-to-end object detection pipeline.

Learning Non-Maximum Suppression: The work of [15] analyzes the
drawbacks of sequential NMS, and proposes to use an affinity propagation al-
gorithm to pass information between hypotheses. While sharing the common
high-level idea of using information between pairs of hypotheses to perform bet-
ter filtering, this method differs from ours in the model used for describing
hypotheses interactions and the loss function being optimized. Another promis-
ing approach is shown in [8]. There, all hypotheses are mapped to a spatial grid
based on their center locations. The extracted pre-trained classification scores
and intersections between hypotheses are then used as inputs for a convolutional
network operating on this grid structure. Another aprroaches based on Hough
transform were proposed in [2], [9]. However, no end-to-end optimization was
shown for these NMS replacements, leaving the approach detached from the
underlying per hypotheses classifier networks.

End-to-end learning of object detection pipeline: Wan et al. [18] pro-
poses a method to incorporate an object detector, deformable parts model and
NMS in a fully differentiable pipeline. Nevertheless, the NMS step still remains
a fixed transformation over a set of hypotheses, reformulated as a layer per-
forming a particular operation. The same applies to Henderson et al. [7], who
propose a way to propagate gradients directly for the mean average precision
(mAP) loss. There NMS is treated similar to a max-pooling step, where only the
hypotheses representing a local-maximum propagate gradients. The problems
illustrated in Figure 1(a) therefore remain unchanged; hypotheses falling under
the suppression condition will still be pruned out.

Finally, Stewart et al. [17] replace the NMS post-processing stage with LSTM
cells in order to achieve better spatial reasoning for neighbouring hypotheses.
However, this method requires the image to be divided into a regular grid of
independent regions, e.g. 15 x 20, while predictions across regions are merged
via a heuristic stitching step.

3 Problem Formulation

As mentioned before, the object detection pipeline is regularly a combination of
three steps - searching for good hypotheses, generating independent predictions
for each of them, and joint filtering of the final set. Our work focuses on the
last step. Given a set of hypotheses for an image I, we assume the following
information to be provided

H:{[hizs(hi)vf(hi)}’i:1""7m}) (1)
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where h; € R* are hypothesis bounding box coordinates (regularly represented
as (z,y)-coordinates of upper left corner and width and height of a box). Scores
are denoted by s(h;) € R™ for all n classes of interest. This is the output for every
hypothesis from the proposal classification step. f(h;) € R? is a feature vector per
hypothesis (for example, CNN features). Here and below square brackets stand
for concatenation of the vectors. The total number of hypotheses per image m
can vary between images.
During training, ground truth hypotheses are denoted by G:

G={lgici],i=1,....d}, (2)

where g; € R* - ground truth bounding box coordinates, ¢; € {1,...,n} - class
label for the ground truth, d is the total number of ground truth objects on
image. The proposed filtering step re-scores all class scores for every hypotheses
h; € H while considering all other hypotheses in H:

H — H' = {[h,s'(hi, H), f(h:)],i =1,...,m}. 3)

The classical NMS can be considered as copying the scores for unsuppressed
hypotheses s'(h;) = s(h;, H) and setting it to zero vector for suppressed ones
s'(hj, H) = 0. The new scores s'(h;, H) typically aim to minimize the mAP
evaluation metric, described in [5] and discussed in Section 5.2.

4 Filtering network architecture

The focus of this work is on differentiable, thus, end-to-end learnable filtering
of hypotheses for multi-class object detection. Our proposed filtering network
FNet allows to optimize the underlying score generating network not only based
on the scores but also its features in order to generate one matching hypothesis
per ground truth bounding box labeling. The main idea of FNet is to utilize all
the information (eq. 1) provided by the earlier steps of a pipeline by building a
pairwise matrix P (eq. 5) in order to learn context features that will allow to
filter hypotheses based on global knowledge. Thus, FNet is designed to directly
solve the filtering step formalized in (eq. 3):

§'(hi,H) = FNet(h;,H),i=1,...,m. (4)
We start by building the pairwise matrix P
Pi,j = [f(hi)af(h])vhhhj]v Pngmekv (5)

consisting of two types of features, the feature vectors of the per-hypothesis
network and the corresponding hypotheses locations. Based on P, we learn a
new pairwise matrix P

ﬁ)ivj — NiNPairwise(H’j)’ If) c Rmxmxk" (6)
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where NiN represents a network in network [11] which is convolved over the
pairwise matrix P. The main idea behind the approach is that, given pairwise
set of features P;; € R* (e.g. scores and features for both hypotheses under
consideration plus ratio of overlap between corresponding bounding boxes), we
learn a small network to abstract this data and produce a new feature vector
15“ € R¥ that will represent learned relations between pair of hypotheses.

Since every image can have a different number of hypotheses m, we apply a
reduction operator:

K = R(P) : Rm*mxk — gk, (7)

which results in fixed sized context feature matrix K. Each i'th row of this
matrix represents context features vectors for hypothesis ¢ that we denote as
K; = K(h;). The original feature vector f(h;) is fused with its context feature
vector K (h;) via another network in network, producing the final score s'(h;)
for the given hypothesis

s'(hi, H) = NN (f(h;), K(h;)), i=1,...,m. (8)

Input features As discussed in the previous section, we generally consider
two types of input features, network features f(h;) provided by earlier stages of
the pipeline, and location coordinates h;. Since there is usually problem specific
knowledge present, in practice it is very helpful to add additional function of the
input features

P j = [f(h), f(hy), f(hi) — f(hys),sign(f(hi) — f(h;)), ToU(hi, hy)],  (9)

where IoU stands for intersection over union between hypotheses areas, and sign
returns an element-wise indication of the sign of a vector. Adding the difference
between hypotheses and the sign provides a helpful signal to the network in order
to decide whether or not there exists a better scored hypothesis. Using IoU as
a feature provides further evidence of the relationship between two hypotheses
besides their feature vectors and scores.

Reduction operator We select a combination of simple maximum and average
pooling operations as the reduction operation of choice for all the considered
experiments:

A 1 A m k/
]{iitz m?‘XPi,j7t7EZPi,j7t:|vt:17"'7k17K€R x (10)
J

5 Learning objectives

We explore two possible learning objectives to optimize FNet. In order to verify
the learning capacity of the proposed FNet architecture, we introduce a loss
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function that will force FNet to mimic decisions made by NMS. We hypothesize
in Section 5.2 that a new loss function is required in order to improve over the
previously presented NMS error cases. Henderson et al. [7] show that mAP is
a complex structured loss over thousands of hypotheses, thus, in this paper we
propose to substitute the mAP with a proxy loss function (net-loss) that can be
evaluated on a per image basis.

5.1 Approximate Non-Maximum Suppression Objective

We can approximate the sequential NMS process with fixed IoU threshold a by
decomposing decisions made for every hypothesis h; with class score s; into the
following per-hypothesis labels:

L(hs) = 0, if 3h; :.IOU(hi,hj) > a and s;(hj) > s.(hs); (1)
1, otherwise;
where z = 1,...,n, n is the number of classes and s,(h;) is the score for class z

and hypothesis ¢. Based on these labels, we can optimize a multi-class objective
such as cross-entropy for the FNet score s'(h;, H) and the target labels of eq. 11.
In that case filtering scores s’(h;, H) cannot be used directly to represent class
probabilities, since the network learns to mimic suppression. It is not aware of
cases when a hypothesis is not suppressed by NMS. Since the hypothesis itself
might have a low independent score itself, we obtain the final score per hypothesis
h; by multiplying the original score s(h;) with our filtering value s’(h;, H). This
approach results in decreased scores for those of the hypotheses that have high
suppression probabilities:

S//(hi) = S(hl) . S/(hi,H). (12)

It is important to mention that there are cases when this non-sequential labeling
will result in different selected set of hypotheses compared to the sequential NMS
as shown in Figure 3(a). For illustrative purposes, we assume that we have an
ordered set of hypotheses with class scores s(hy) > s(ha) > s(hs). According to
our labeling procedure, the lowest scoring hypothesis h3 will have a zero label
because of the high overlap with hs and the higher score. Whereas NMS will
process all hypotheses sequentially starting from h1, selecting it, then suppressing
the highly overlapping hs, and finally selecting h3 because of absence of hy in
the remaining set.

In the majority of cases, however, the selected sets behave very similar. For
example, for proposals produced by FasterRCNN [14] on the PascalvVOC2007
test set, decisions made by normal NMS and our approximate version agree on
98.1% of all hypotheses under consideration.

5.2 Network Detection Objective

The previously introduced labeling and loss for learning NMS only functions as a
testbed showing the capabilities of our FNet architecture, capable of explaining
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Fig. 3: Overview of learning objectives.

away hypotheses in order to reproduce NMS results. Yet, this formulation will
at best result in the approximate NMS solution in case of training convergence,
thus, will not allow FNet to address the failure modes of sequential NMS. In the
following we propose a new loss formulation which better approximates mAP.
The mAP metric [5] has two significantly different properties compared to regu-
larly used loss functions for end-to-end training. First, it penalizes the presence
of multiple hypotheses corresponding to the same ground-truth region.Thus, a
model intended to optimize for mAP should allow to explain away sets of hy-
potheses. Second, mAP is in fact structured over all hypotheses of all images in
the test set, meaning that the change in the score obtained by hypothesis h;;
of the image I; could result in different loss signal for hypothesis h,, of image
I,. While there are works aiming to overcome this issue, e.g. [7], our work fo-
cuses on the hypotheses filtering. The ideas from [7] can be incorporated into
our framework but is beyond the scope of this paper and therefore subject for
future work.

Similar to the approximate NMS loss, we aim to generate per-hypothesis la-
bels that will result in an improvement for mAP. In case of mAP, the aforemen-
tioned property of positive reinforcement of only the highest scoring hypothesis
could be reformulated as the following per-hypothesis label:

I(hi) = 1, if 3g € G : ToU(h;,g) > a and ﬂhj,i;éjzsj > s;,I0U(hy, g9) > a;
v 0, otherwise.
(13)

In other words, hypothesis h; will get positive label if and only if there is
some region ¢ from the set of ground truth regions G that overlaps significantly
with hypothesis under consideration, and hypothesis h; has the maximum score
of all hypotheses matching that ground truth region. The network is then trained
to directly minimize cross-entropy between scores, output by FNet, and labels
according to eq. 13. The difference between regular independent per-hypothesis
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Table 1: Results on oMNIST single Table 2: Results on oMNIST multi-

digit canvas. class digit canvas.

]digit[ network[lossllenet-feature[mAP[ network| loss | lenet-features [ mAP
1 [LeNet + NMS 0.87] |LeNet + NMS 0.83
1 F FNet|nms| score [s] |0.93 + FNet|nms|scores [s] + fc| 0.81
1 + FNet| net |score [s] + fc|0.97 + FNet| net [scores [s] + fc] 0.78
3 |LeNet + NMS 0.87
3 F FNet|nms| score [s] |0.90| Table 3: Results on PascalVOC test
3 + FNet| net [score [s] 4+ fc[0.96| ||method loss|| mAP
6 |LeNet + NMS 0.87 | ||FasterRCNN (no filtering) 0.270
6 + FNet|nms| score [s] [0.92] [[+NMS 0.680
6 + FNet| net |score [s] + fc|0.96| ||+FNet net|| 0.675

labeling and our network labeling is shown in Figure 3(b). While both methods
penalize ill-located hypothesis hg, the labeling induced by our method also force
redundant hypothesis ho to be filtered - exactly in the same way it would be
treated by mAP evaluation.

6 Experiments

For all considered experiments simple 2-layer neural network with the 512 hidden
units and ReLU activations was used to represent both pairwise and context
network in network (NiN).

Overlapping MNIST We construct the dataset by randomly placing digits
from the MNIST dataset on 128 x 96 black canvas with background Gaussian
noise. In order to create a more realistic dataset we draw a number of digits
per canvas uniformly from [0, 24]. For each digit, we draw a location uniformly
at random from all valid coordinates of the canvas. An example of a generated
image is shown in Figure 2.

We start with the setting when only one class of digits is placed on a canvas,
resulting in images with highly overlapping instances of a single class. We exper-
iment with three different digits being placed on a canvas (”1”,73”,76”). In all
of the cases FNet shows a substantial performance gain over baseline NMS ap-
proach (Table 1). This suggests that the methods trained on real-world datasets
with similar properties, i.e. a large number of overlapping instances of the same
class (such as Caltech Pedestrian [4]), could potentially benefit from combining
them with our architecture. The results for a multi-digit canvas are shown in Ta-
ble 2. FNet still achieves comparable performance when trained for approximate
NMS objective, while optimization for network loss gives notably worse perfor-
mance. The issue, though, still could be addressed by proper hyperparameter
tuning.

KITTI Similar to the oMNIST experiment we use the scores and features from
the last fully-connected layer of a pre-trained network as our per-hypothesis



10

Sergey Prokudin', Daniel Kappler*!, Sebastian Nowozin?, and Peter Gehler?

Table 4: Results on the KITTI benchmark validation set

Car Pedestrian
method|loss|| Easy Mod Hard || Easy Mod Hard
MS-CNN (no filtering) 0.722 0.669 0.540 (| 0.540 0.494 0.442
+ NMS 0.922 0.917 0.813(/0.896 0.867 0.744
+ FNet|nms|{0.921 0.916 0.813 ||0.896 0.866 0.741
+ FNet|net |[ 0.913 0.910 0.865|| 0.890 0.839 0.746

features vector f(h;), in this case MS-CNN [3]. The results for the per class
trained FNet on the classes 'Car’ and 'Pedestrian’ are shown in the Table 4. We
omit the results for the class "Cyclist” since we were unable to reproduce the
baseline network behaviour.

The FNet results in Table 4 indicate that our proposed approach is indeed
expressive enough to be on par with the sequential NMS. Interestingly, using
the net-loss discussed in Section 5.2 results in slightly worse performance on the
"Easy’ and ’Moderate’ data examples, though improvements can be observed in
the harder cases of both classes. Notice, all results reported on MS-CNN have
been trained as a replacement of sequential NMS on top of MS-CNN and not
end-to-end.

PascalVOC2007 For the PascalVOC2007 dataset we use the hypotheses and
features from a pre-trained FasterRCNN [3] as our baseline method. The feature
vector f(h;) is again constructed from the scores and the last fully-connected
layer of the pre-trained network. We train FNet using the proposed network
based labeling (net-loss) with a single multi-class objective. The results in Table 3
show a small performance drop compared to the sequential NMS filtering step.
Similar to the KITTI results, no end-to-end training was performed to achieve
these results.

7 Conclusion

We have shown an architecture that allows to learn a filtering behaviour based
on a potentially varying set of hypotheses per image, while being end-to-end
differentiable. We have presented an approximate NMS labeling and shown in
experiments on oMNIST and KITTI datasets that our FNet architecture can
match the sequential NMS performance by fitting this proxy objective. Further,
this network allows to directly optimize an objective that is better aligned with
final evaluation metric. We have shown on the synthetic o MNIST example that in
case of a large amount of highly overlapping objects of a same class a combination
of a flexible filtering and proper loss can result in a notable performance gain.
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