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1. Introduction

Every time we deal with multiples entities interacting among themselves we
can ask ourself what the outcome of these interactions will be. Animals fighting
for leadership, teams and players facing each other in competitions, individuals
endorsing other individuals are only a small example of contexts where we can
assume that interactions and their outcomes are not simply random sequence of
events but that there is some kind of hierarchy or structure in the system ruling
the observations. This hidden ranking, characterizing all the entities involved in
this kind of systems, is obviously not explicit, but its effects are shown in the
asymmetric patterns we can observe in the data. Since dominant animals tend to
assert themselves over less powerful subordinates, or stronger teams tend to beat
weaker ones, there must be a score measuring some kind of skill for each subject
that can be the fundamental explanatory variable needed to predict future out-
comes and forecast what is about to happen. Besides the natural noise affecting
real data and the partial randomness governing all the observations, what makes
this problem even more challenging is that, in most of the more interesting appli-
cations, the ranking changes through time. Life cycle makes human beings and all
animals in general experience youth, adulthood and old age. The same in sports,
where injuries, changes in the team’s components, physical form and other factors
can upset the current balance of power. This variability in the ranking requires a
different approach even while collecting the data. Imagine for example an individ-
ual occupying at the beginning the bottom of the ranking, then reaching the top
and finally going back to the bottom again (like in the life cycle example youth-
adulthood-old age introduced above). The only information about the number of
successes or failures of this subject is not enough to infer the evolution of his rank
properly. In fact, to be able to guess this parabolic behaviour we obviously need
the additional piece of information involving the time stamps of the interactions.
Without any time knowledge we would probably end up assigning the individual a
medium position inside the ranking, losing completely the intuition of the different
phases he has gone through, with evident impact in the forecasting performances.
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2 CHAPTER 1. INTRODUCTION

In this thesis, extending the work done in [1], we introduce a physically-inspired
model addressing the problem of dynamic hierarchy inference and edge predictions
in directed networks. The key point in dynamic ranking is to find the right equi-
librium between past history and new data available: on one hand we are tempted
to use all the possible information we have in the past to extract robust scores
with smooth trajectories through time, on the other we want to assign more value
to present observations, in order to capture promptly variations in the hierarchy
and adapt the score estimates. We deal in particular with data taken from sports,
where the focus is mainly on the outcomes’ prediction more than on the edge ex-
istence, since the fixed schedule of the matches is given from the beginning.
We show that our algorithm performs better than a variety of existing methods and
that is way faster than many of them, specially compared with Bayesian methods
such as TrueSkill and WHR.

In the second part we develop a Bayesian model, exploiting variational inference
to approximate the true uncomputable posterior. Various modifications of this
model, specific to the application, are presented, highlighting for all of them their
particular strengths and weaknesses. After a theoretical discussion of some of
the modern techniques adopted in this area, such as variational EM, mean field
approximation, Black-Box variational inference and others, all this knowledge is
applied to our problem and tested against real data.



2. The SpringRank model

SpringRank is a physically inspired model for hierarchy inference, edge predic-
tion, and significance testing in directed networks. The model maps each directed
edge to a directed spring between the nodes that it connects, and finds real-valued
positions of the nodes that minimizes the total energy of these springs. Because
this optimization problem requires only linear algebra, it can be solved for net-
works of millions of nodes and edges in seconds.
Interactions between N entities are represented as a weighted directed network,
where Aij is the number of interactions i→ j suggesting that i is ranked above j.
This allows both ordinal and cardinal input, including multiple interactions among
pairs. For instance, Aij could be the number of fights between i and j that i has
won, or the number of times that j has endorsed i. Given the adjacency matrix A,
our goal is to find a ranking of the nodes. To do so, the SpringRank model com-
putes the optimal location of nodes in a hierarchy by imagining the network as a
physical system. Specifically, each node i is embedded at a real-valued position or
rank si, and each directed edge i→ j becomes an oriented spring with a nonzero
resting length and displacement si − sj. Since we are free to rescale the latent
space and the energy scale, we set the spring constant and the resting length to 1.
Thus, the spring corresponding to an edge i→ j has energy:

Hij =
1

2
(si − sj − 1)2 (2.1)

which is minimized when si − sj = 1.
According to this model, the optimal rankings of the nodes are the ranks s∗ =

(s∗1, ..., s
∗
N) which minimize the total energy of the system given by the Hamiltonian

H(s) =
N∑

i,j=1

AijHij =
1

2

N∑
i,j=1

Aij(si − sj − 1)2. (2.2)

3



4 CHAPTER 2. THE SPRINGRANK MODEL

Since this Hamiltonian is convex in s, we can find s∗ by setting ∇H(s) = 0.
Looking at the i-th component of the gradient we obtain:

∂H

∂si
=
∑
j

[Aij (si − sj − 1)− Aji (sj − si − 1)] = 0 . (2.3)

Let the weighted out-degree and in-degree be dout
i =

∑
j Aij and din

i =
∑

j Aji,
respectively. Then Eq. can be written as

(
dout
i + din

i

)
si −

(
dout
i − din

i

)
−
∑
j

[Aij + Aji] sj = 0 . (2.4)

We now write the system of N equations together by introducing the following
matrix notation. Let Dout = diag(dout

1 , . . . , dout
N ) and Din = diag(din

1 , . . . , d
in
N) be

diagonal matrices, let 1 be the N -dimensional vector of all ones. Then Eq becomes

[
Dout +Din −

(
A+ AT

)]
s =

[
Dout −Din] 1 . (2.5)

The matrix on the left side of (2.5) is not invertible. This is because H is
translation-invariant: it depends only on the relative ranks si − sj, so that if
s∗ = {si} minimizes H(s) then so does {si + a} for any constant a. A way to
break translation invariance is to introduce an “external field” H0(si) = 1

2
αs2i af-

fecting each node, so that the combined Hamiltonian is

Hα(s) = H(s) +
α

2

N∑
i=1

s2i . (2.6)

The field H0 corresponds to a spring that attracts every node to the origin. We
can think of this as imposing a Gaussian prior on the ranks, or as a regularization
term that quadratically penalizes ranks with large absolute values. This version
of the model has a single tunable parameter, namely the spring constant α. Since
H(s) scales with the total edge weight M =

∑
i,j Aij while H0(s) scales with N ,

for a fixed value of α this regularization becomes less relevant as networks become
more dense and the average (weighted) degree M/N increases.

For α > 0 there is a unique s∗ that minimizes Hα, given by

[
Dout +Din −

(
A+ AT

)
+ αI

]
s∗ =

[
Dout −Din]1 , (2.7)

where I is the identity matrix.



3. Dynamic extensions to SpringRank

3.1 Related work

The estimation of rankings in a system from pairwise directed interactions is
a fundamental problem in various contexts. Various models have been proposed
to study static rankings: spectral methods including Eigenvector Centrality [2],
PageRank [3] and Rank Centrality [4]; approaches aimed at ordinal rankings such
as Minimum Violation Rank [5, 6, 7], SerialRank [8] and SyncRank [9]; Random
Utility Models [10] such as Bradley-Terry-Luce (BTL) model [11, 12]; fully gener-
ative models including Probabilistic Niche Model of ecology [13, 14, 15] or models
of friendship based on social status [16], and more generally latent space mod-
els [17] which assign probabilities to the existence and direction of edges based
on real-valued positions in social space. However, these approaches can be lim-
ited or insufficient for modeling dynamic environments where ranks vary in time
and interactions have a chronological order. Elo score [18], commonly used for
Chess rating system, has been one of the first win-loss method updating the ranks
after each match rather than taking all previous interactions into account. The
key idea behind the Elo System is to model the probability of the possible game
outcomes as a function of the two players’ skill scores s1 and s2. Elo Rank was
later improved by the Glicko system [19] who incorporates a measure of reliability
of one’s rating which measures rating’s uncertainty, for instance due to a period
of inactivity or lack of data. We have also Park & Newman’s win-lose score algo-
rithm [20] and its dynamic extension [21]. Another Bayesian skill rating system,
which can be seen as a generalization of the Elo system, is the so called TrueSkill
[22] algorithm. This model uses factor graphs and approximate message passing
to infer the marginal belief distribution over the skill of each player. Its straight-
forward extension is the so called TrueSkill Through Time (TTT) [23] that infers
entire time series of skills of players by smoothing through time instead of filtering.
More recently, Whole-History Rating (WHR) [24] has been developed to estimate
the time-varying strengths of the players involved in paired comparisons. Like

5



6 CHAPTER 3. DYNAMIC EXTENSIONS TO SPRINGRANK

many variations of the Elo rating system, the approach of WHR is based on the
dynamic Bradley-Terry model. However, instead of using incremental approxima-
tions, WHR directly computes the exact maximum a posteriori over the whole
rating history of all players.
Since in this context we do not know ground-truth rankings, the accuracy of the
different methods in estimating a meaningful scores can be estimated by assessing
the quality of the prediction. That is, given an estimated set of scores, predict the
outcomes of unobserved interactions.

3.2 Dynamic models

As explained in the introduction the problem with static rating systems is that
they do not consider the variation in time of the strengths of players. Therefore,
they are appropriate for rating humans only over a short period of time.
We propose here a model that incorporates time information into the standard
(static) SpringRank algorithm. This model assumes a smooth dynamics for the
scores, with the Markovian assumption that the scores at time t only depend on
the scores at the previous time step t− 1.

3.2.1 Moving window SpringRank

The simplest way to extend the static SprinkRank in a dynamic context is using
a sliding window model. We divide the entire dataset into consecutive windows
of fixed time length D. We assume that the scores are static inside each window.
In this way, we can apply standard SpringRank within each interval. We do not
make any assumption about how scores are related at different time steps and
thus treat each interval as independent. It is worth to notice that using this model
we may have to deal with two opposite main problems. On one hand, for highly
varying rankings, a short window is needed to capture the dynamics and reduce
the averaging effect of the static assumption within intervals. This comes at the
cost of having less data to perform inference, thus making parameters’ estimate
less accurate. On the other hand, a large window contains more data to infer scores
more robustly but at the cost of missing most of the dynamical changes within
the interval. This trade-off suggests the existence of an optimal window’s length
Dopt. We infer it using a cross-validation procedure adapted to time dependent
and chronologically ordered data. Moreover, decayed-history rating systems that
progressively forget old interactions have some typical structural flaws. Using the
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language of sport, the main problem is that the decay of games weights generates
a very fast increase in the uncertainty of player ratings. With the decayed-history
approach, players who stop playing for a while may experience huge jumps in their
ratings when they start playing again, and players who play very frequently may
have the feeling that their rating is stuck. If players do not all play at the same
frequency, there is no good way to tune the speed of the decay [24].

3.2.2 MC SpringRank

Unlike in animal behaviour or in systems of endorsement, in a sport context,
where usually the schedule of the matches is randomly chosen, we can not interpret
the information deriving from the only existence of an interaction as a signal of
closeness in ranking. Moreover, to be meaningful, the ranks shouldn’t be too
much sensitive to small perturbations but they must evolve in time as smoothly
as possible.

We modify SpringRank algorithm assuming a dynamic rest length ltij of the
spring responsible for the interaction at time t between i and j. Furthermore, we
assume ltij to be a function of the score difference st−1i − st−1j between i and j at
time t− 1:

H t
ij

(
sti, s

t
j

)
=

Atij
2

(
sti − stj − ltij

)2 (3.1)

ltij = st−1i − st−1j + `0 (3.2)

where constant `0 6= 0, similarly to SpringRank model. In fact the problem with
the definition ltij = st−1i − st−1j is that at time t the model would try to minimize

H t
ij

(
sti, s

t
j

)
=

Atij
2

(
sti − stj − (st−1i − st−1j )

)2 obviously imposing sti = st−1i , stj = st−1j

-so no changes in the ranking- to obtain an objective always equal to 0. Thus, to
avoid this useless solution, we need definition (3.2) with `0 6= 0.
Intuitively from this formulation we have that, if i beats j at time t, so Atij > 0,
the system will try to minimize the total energy increasing the previous distance
st−1i − st−1j in the ranks between i and j by an additional `0 amount (of course it
doesn’t happen exactly most of the time because of cycles, i.e i→ j → ...→ z → i,
remember we want to minimize the total H t and not only H t

ij separately).
We can write now the total Hamiltonian:

H t(st, st−1) =
∑
i,j

H t
ij

(
sti, s

t
j

)
(3.3)
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If we define a new variable zt = st − st−1 we obtain:

H t(zt) =
∑
i,j

H t
ij

(
zti , z

t
j

)
=
∑
i,j

Atij
2

(
zti − ztj − `0

)2
which is the exact same Hamiltonian used in SpringRank and then z∗t will be the
solution of the exact same equation found in [1]:

[
Dout +Din −

(
A+ AT

)]
z∗t =

[
Dout −Din] `01.

The main problem with this formulation is that the model is not self-normalizing
and the scores tend to diverge as time goes by. This means that the specific
values of the ranks are not meaningful and, mostly, the model is slow to adapt
to changes in the balance of power among the teams. That is why we need to
introduce ’by hand’ a discount factor to keep the scores bounded into a fixed
interval sti = sti−1

e−γ(ti−ti−1), where γ must be tuned depending on the specific
application. Clearly this solution is not ideal and we present below a different
self-normalizing model.

3.2.3 Self-Spring SpringRank

In this model again we assume an interaction between individual scores at two
successive time steps, i.e. the scores at t depend on their counterpart at t − 1

(self-interaction). We further assume this dependence is smooth, to guarantee
that single scores do not change too abruptly between successive time window.
We do this by extending the standard SpringRank’s Hamiltonian with an extra
term that models the self-interaction between past and current scores. This can
be seen as an additional spring that connects the score of an individual with its
previous value. Overall, each individual feels interactions with others at the same
time step, and with himself at the previous time.

Interaction term:

H int
ij (sti, s

t
j) =

Atij
2

(sti − stj − `0)2 (3.4)

Self-interaction term:
H0(s

t
i, s

t−1
i ) =

1

2
(sti − st−1i )2 (3.5)
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Total Hamiltonian at time t:

H t(st, st−1) =
1

N2

∑
i,j

[
H int
ij (sti, s

t
j) +H int

ji (stj, s
t
i)
]

+
k0
N

∑
i

H0(s
t
i, s

t−1
i ) (3.6)

where we normalized the first and second term by respectively 1
N2 and 1

N
to re-

duce scale problems, with k0 regulating the importance of the first term of inter-
actions among nodes at time t with respect to the second one representing the
self-interaction of each node with its past.

The rest length of self-interaction terms H0(s
t
i, s

t−1
i ) is zero because we want

this to be minimal when sti = st−1i . This will also minimize the total Hamiltonian
in case an individual i does not interact with anyone in a given time window, i.e.
At+1
ij = 0, At+1

ji = 0 for all j 6= i, therefore its score should not change.
To find the minimum we start calculating the i-th component of the gradient:

∂H t

∂sti
=

1

N2

∑
j

[Atij(si − sj − `0)− Atji(sj − si − `0)] +
k0
N

(sti − st−1i ) =

=
1

N2

∑
j

(Atij + Atji)s
t
i −

1

N2

∑
j

(Atij + Atji)s
t
j+

− 1

N2

∑
j

(Atij − Atji)`0 +
1

N
k0(s

t
i − st−1i ) =

=
1

N2
(douti + dini +Nk0)s

t
i −

1

N2

∑
j

(Atij + Atji)s
t
j+

− 1

N2
(douti − dini )`0 −

1

N
k0s

t−1
i

Imposing ∇H = 0 we obtain:

(douti + dini +Nk0)s
t
i −
∑
j

(Atij + Atji)s
t
j =

= (douti − dini )`0 +Nk0s
t−1
i

We would like to find a rest length l̂ti such that this model is equivalent to
SpringRank, we impose then:

(douti − dini )`0 +Nk0s
t−1
i = (douti − dini )l̂ti (3.7)

and, when douti − dini 6= 0, this leads to:

l̂ti = `0 +
Nk0s

t−1
i

douti − dini
(3.8)
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so that this model coincides with SpringRank with parameters l̂ti = `0 +
Nk0s

t−1
i

douti −dini
and α = Nk0.
Since it shows the best performances, in the following we will keep using this
model.

3.2.4 Model testing

Testing a ranking model in real datasets is not straightforward since we do not
know the true value of the rank for each team. Nevertheless we can assume that a
given ranking is accurate as long as it is helpful in predicting the outcome of new
observations.

The simplest measure we can use to understand the quality of our predictions is
clearly the accuracy which counts banally the number of times an observed directed
link goes from the highest-in-rank node toward to the lowest one –i.e. the number
of time that a stronger (according to our ranking) individual beats a weaker one.
Similarly, another measure involving the weighted sum of upsets is the so called
agony function [7]. The basic idea is that, given our predicted ranking at time t,
every time we observe an outcome reverting our hierarchy we get a penalization
(i.e. a positive contribution, we want the agony as small as possible) weighted for
the difference in ordinal ranks1: in particular, an upset between two nodes ranked
nearby counts much less than an upset between two nodes that are far away in the
ranking:

agony =
1

M

∑
i,j

Aij max(0, ri − rj)d (3.9)

where ri ∈ [0, .., n − 1] is the ordinal rank of node i. When d = 0 we recover the
standard number of unweighted upsets. We expect that the better the ranking is
predicted, the lower the agony is, which means that our hierarchies are violated
as least as possible. Up to now we considered only the position of each node
inside the entire ordinal ranking. Nevertheless, for models such as SpringRank a
notion of score -a real number representing the effective strength of the node- is
naturally associated to each individual together with a probability of victory or loss
depending on this score-difference. To evaluate also these probabilistic predictions
we will consider two other metrics: σa is the average probability assigned to the
correct direction of an edge, and σL is the log-likelihood of generating the directed
edges given their existence. In the multigraph case, we ask how well Pij, the
probability that i beats j, approximates the fraction of interactions between i and

1We use positional ranks instead of the real valued scores to avoid scale problems comparing
different algorithms



CHAPTER 3. DYNAMIC EXTENSIONS TO SPRINGRANK 11

j that point from i→ j:

σa =
1

2M

∑
ij

|Aij − AijPij| (3.10)

As regards σL we measure accuracy via the conditional log-likelihood, asking with
what probability we would obtain the directed network A from the undirected one
Ā, with Pij the probability that an edge between i and j points from i → j and
Pji = 1− Pij if points from j → i:

σL = logPr
[
A|Ā

]
= (3.11)

=
∑
ij

(
Aij + Aji

Aij

)
+ log

[
Pij(β)Aij(1− Pij(β))Aji)

]
,

where we explicitly highlight the dependence of Pij on the (inverse) temperature
parameter β which control the level of hierarchy in the predictions (for β → inf

the network is fully hierarchical which means that an edge between i and j, with
score(i) > score(j), goes from i → j with Pij = 1; on the contrary, for β = 0

the outcome predictions are completely random with Pij = Pji = 0.5 no matter
the rank of i or j). It is worth to notice also that in general maximizing either σa
or σL can not be same and thus we will obtain two distinct values for β that we
will denote with β̂a and β̂L. Intuitively, the reason is that a single severe mistake
where Aij = 1 but Pij ≈ 0 reduces the likelihood by a large amount, while only
reducing the accuracy by one edge. As a result, predictions using β̂a produce fewer
incorrectly oriented edges, achieving a higher σa on the test set, while predictions
using β̂L will produce fewer dramatically incorrect predictions where Pij is very
low, and thus achieve higher σL on the test set [1]. In practise using the language
of sport, a prediction model whose goal is to maximize σL will tend to be more
cautious in assigning high probabilities of success even in very unbalanced matches
in order to avoid potential painful mistake; on the contrary, a model optimizing σa
can be less conservative, ignoring isolated (even dramatic) mistakes and favouring
a good frequency of predictions as close as possible to the real probability.

3.2.5 Generative model and synthetic dataset

In analogy with SpringRank generative model presented in [1], in this section we
propose a dynamic probabilistic generative model that takes in input the scores st−1i

at t−1 and generates a weighted directed network with adjacency matrix At at time
t. Also in this case, the model has a noise parameter β and a density parameter
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c. Edges between each pair of nodes i, j are generated independently conditioned
on the scores st. The expected number of edges between i, j is proportional to the
probability P t

ij of i beating j at time t. This probability should depend on the
difference sti − stj and on the noise parameter β regulating the extent to which the
edges respect the scores; also, P t

ij + P t
ji = 1. A natural choice is the softmax as in

[1]:

P t
ij =

1

1 + e−2β(s
t
i−stj)

. (3.12)

We thus obtain:

E[Atij] = c P t
ij =

c

1 + e−2β(s
t
i−stj)

. (3.13)

with the weight Atij drawn from a Poisson distribution with mean (3.13):

Atij ∼ Pois

(
λ =

c

1 + e−2β(s
t
i−stj)

)
(3.14)

Also in this case, c controls the overall density of the network given an expected
number of edges at time t:

E[M t] =
∑
i,j

E[Atij] = c
∑
i,j

P t
ij = c

∑
i,j

1

1 + e−2β(s
t
i−stj)

. (3.15)

The difference with the static generative model of [1] is that here scores evolve in
time. Hence, if we want to draw a chain of networks in time, we need to update
the scores accordingly. They depend not only on the previous-time scores, but also
on the network At just drawn:

st = f(st−1, At) , (3.16)

where f denotes a generic function that needs to be specified. Clearly f must
balance between the dependence on the past history st−1 -to be useful we want the
scores to evolve smoothly in time, big jumps should be avoided- and the importance
of the information deriving from the new data At just observed that can reveal a
change in the actual ranking.
Actually, to force changes and swaps in the ranking, at the moment of creating
synthetic datasets we will choose the exact evolution though time of the score st
for each individual, taking on purpose trajectories that repeatedly fall down and
climb back up, simulating in this way the typical dynamic behaviour we expect to
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find in sport contests due to injuries, changes in the team’s players, form of the
team etc. and in all the other fields we are interested in:

st = g(t). (3.17)

At each time t we use (3.14) to generate data. We can assign arbitrarily the initial
values of the ranks s01, ..., s0N , here we will draw them from a standard normal
distribution.

3.3 Static or dynamic?

In this section we return on the problem of choosing, given a dataset, between a
static or a dynamic approach. As explained in the introduction, static algorithms
cannot perceive the different phases the entities we want to rank are going through.
Because of that, these static models end up assigning the competitors a unique
average value for the entire period of study. This clearly prevents us from effec-
tively forecasting the outcomes of future matches and that is why, in a dynamic
time-varying context, we need dynamic rating systems able to promptly capture
variations in the ranking. We know that if the extracted ranking is good, and
when the problem under investigation is hierarchical, the outcomes of the matches
are expression of these ranks. The form of the time series governing the evolution
of the score s can be whatever but smoothness is a fundamental requirement. In
fact, the only way to do predictions is supposing that the ranking does not change
too much between consecutive instants of time, and then that the ranks extracted
up to time t are still meaningful, in good approximation, to predict outcomes at
t + 1. In real situations this is usually confirmed due to the typical cyclical and
periodic behaviour we can observe for example in sports and other contexts.

Because of this intuition, in every model we have built, we always assumed a
strong correlation between the score at time t with its previous value at time t−1,
supposing it cannot jump too much within consecutive time instants.
We try now to randomly permute the order of the observed matches. This new
dataset contains the same set of matches and outcomes as the original dataset but
time-stamps information is not truthful anymore. Of course, if the ranks are static
and fixed in time, the order of the matches should not be important while estimat-
ing st and dynamic algorithms should perform the same no matter the particular
permutation of the matches chosen (and perform the same of static algorithms).
On the contrary, if the ranks change through time –and given the direct connec-
tion between st and the observed outcomes– we expect that the prediction power
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of dynamic algorithms run on the chronologically ordered dataset will be statisti-
cally higher compared with the same models run on a random permutation of the
dataset. In particular, this is because reversing randomly the order of the matches
we are breaking the natural smooth and periodic behaviour we were mentioning
above, which governs the evolution of the ranks. We are in practice removing the
correlation between st and st−1, making forecasting impossible. Then we expect
that if the dataset is inherently hierarchical and dynamic, the difference between
the performances using the chronologically ordered or the permuted datasets is
significantly relevant.

Using the metrics mentioned in 3.2.4, we test the statistical difference in the
results for both synthetic and real data. We use the dynamic generative model
presented above to create the synthetic datasets varying also the β parameter.
Recall that when β is small -i.e. high temperature- the hierarchy is weak since
there is no dependence between ranks and outcomes anymore (for β exactly zero
the outcome of an interaction between two nodes is completely random). Clearly
in this case we expect no difference in the accuracy of the predictions taking the
matches in the right or randomly permuted order. On the contrary, for a highly
hierarchical dataset where the dynamic scores change smoothly in time, we expect
a relevant improvement using the time-stamps of the interactions and analysing
the data in their chronological order, see Figure 1.
We consider also static situations in which the above generative model is used
but the scores are fixed in time, i.e. st = s0 for every t. Obviously once again
we expect that the various dynamic rating systems do not perform better than
static SpringRank. Moreover, we expect our significance test on the importance
of analysing the matches in their chronological order will be negative since the
ranking is stable and fixed in time, making the collection of all the time-stamps
completely useless, see Figure 2.

As regard real data, Figure 3.1 shows that NBA championship is clearly an
inherently hierarchical and dynamic context, where the collection of the precise
time stamp for each observation is crucial. The hypothesis about the strong corre-
lation between ranks estimated at consecutive instants is confirmed looking at the
well-marked difference between the results obtained using the real chronological
order of the matches against the various permutations of it. This makes NBA
dataset particularly useful for our discussion and we will use it in all the following
of this thesis.
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Figure 3.1: Results obtained for NBA dataset (seasons 2011/2017): analysis
of the performance for different metrics of NBA real data. The red and blue lines are
respectively the value obtained with Self Spring SpringRank (SSSR) algorithm and with
moving window version of SpringRank (MWSR) considering the true time stamps (the
real chronological order) of the matches, each entry of the histogram is instead a different
realization of SSSR for a random permutation of the order of the matches (random time-
stamps assigned to the matches).
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3.4 Results on real and synthetic data

We want now to compare our dynamic ranking algorithm with some of the most
popular existing ones such as Elo-Rank [18], TrueSkill [23] and WHR [24]. Also,
SpringRank [1] and its moving window version presented above will be used as
baselines. First of all we divide the dataset in two parts, one will be used for tuning
the hyperparameters of each algorithms and the other for testing. The two parts
will be kept separate during the entire experiment. Clearly, the parameters will
be selected in order to maximize the performance of prediction on new unobserved
data. The dynamic setting requires preserving the sequential and chronological
order of the observations. This prevents us using a standard cross-validation ap-
proach where one splits randomly observations into a train and test set. That is
because outcomes’ predictions must be done only on unseen subsequent observa-
tions, i.e. observations chronologically subsequent to the ones used for training
the model and estimating the ranking. Since we have time correlated interactions
only the information until time t can obviously be used to infer st+1. Once we
have st+1 we finally predict the outcome of the interactions between nodes at time
t + 1. As explained before, the goodness of the ranking estimate st extracted
by each algorithm is clearly measured on the predictive power that this estimate
assures while forecasting future outcomes, in particular rating models with better
predictive performance will be considered models able to infer better estimations
of the hidden ranks of the nodes. We will use common grid search to tune hyper-
parameters such as window size (WHR, TrueSkill and the moving average SR), k0
(Self Spring SpringRank) etc. Once we have found the best hyperparameters for
each model optimizing the performance on the train set, we infer the sequence of
scores st in the test set and use it again to predict the results of future events (and
the probabilities of these outcomes).

3.4.1 Performance on synthetic networks.

We generate synthetic datasets as explained above. For simplicity we use cosine
functions to model the dynamic scores in equation (3.17):

sti = Ati cos(ωit+ φi) (3.18)

where Ati, ωi and φi are randomly chosen for each team to ensure changes and
swaps in the ranking. Different values of the parameter β in (3.14) have been
tried. Looking at table 3.1, it’s quite clear that results are highly dependent on



CHAPTER 3. DYNAMIC EXTENSIONS TO SPRINGRANK 17

the value of the disorder parameter β in the generative model. For β big, i.e. high
hierarchy when generating the number of the wins for each team, the difference
between using static SpringRank or a dynamic rating system is well-marked. In
this situation our Self-Spring algorithm beats the others in almost all the different
metrics. As long as we reduce β the difference between using static or dynamic
algorithms decreases due to the strong noise in the observations. For the same
reason, also collecting time-stamps for each match and analysing the outcomes in
chronological order is useless, see Figure 1 in appendix 5.
We analyse also the behaviour of the various algorithms in a static situation where
the dataset is created with the same procedure but, differently from (3.18), using
fixed in time ranks sti = si. As expected, static SpringRank performs as well as
dynamic algorithms (see table 3.2). Obviously, also here collecting time-stamps
and analysing the observations in their chronological order is useless, as shown in
Figure 2.

SR Elo TS WHR MWSR SSSR

β = 2.0

acc 0.702 0.879 0.878 0.878 0.869 0.882
agony 0.738 0.222 0.226 0.227 0.250 0.221
σa 0.715 0.856 0.851 0.847 0.872 0.883
σL -1.422 -0.742 -0.562 -0.557 -0.614 -0.589

β = 1.0

acc 0.668 0.822 0.818 0.824 0.820 0.826
agony 0.940 0.398 0.410 0.391 0.399 0.389
σa 0.636 0.787 0.787 0.789 0.825 0.830
σL -1.231 -0.986 -0.809 -0.790 -0.856 -0.791

β = 0.5

acc 0.685 0.699 0.699 0.698 0.696 0.702
agony 0.876 0.897 0.896 0.903 0.914 0.901
σa 0.669 0.683 0.684 0.679 0.708 0.710
σL -1.185 -1.358 -1.168 -1.177 -1.172 -1.169

β = 0.1

acc 0.528 0.519 0.528 0.515 0.579 0.513
agony 1.629 1.710 1.701 1.741 1.685 1.773
σa 0.610 0.603 0.603 0.601 0.579 0.575
σL -1.379 -1.449 -1.396 -1.403 -1.398 -1.405

Table 3.1: Results on synthetic networks: the table shows the results accord-
ing to various metrics (rows) for the principal state-of-art ranking algorithms such as
SpringRank (SR), EloRank, TrueSkill (TS), Whole History Rating (WHR) compared
with our moving window version of SpringRank (MWSR) and Self Spring SpringRank
(SSSR). Different values of the β parameter have been tried in the generative model.
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SR Elo TS WHR MWSR SSSR
accuracy 0.718 0.718 0.715 0.699 0.712 0.702
agony 0.495 0.528 0.529 0.548 0.528 0.551
σa 0.663 0.656 0.665 0.651 0.717 0.705
σL -1.147 -1.292 -1.137 -1.156 -1.742 -1.276

Table 3.2: Results obtained for synthetic data in a static framework: compar-
ison of the performances of the various static and dynamic rating systems on a synthetic
dataset where in the generation process the ranks are kept fixed along time (static frame-
work).

3.4.2 Performance for real network

We consider real datasets of NBA regular seasons matches from 2011 to 2017.
Overall, we have a total of M = 9594 matches distributed in 8 seasons. The
number of teams is N = 30 and tie is not an outcome allowed (matches that are
even at the end of the regular time go to overtimes until we have a winner). Table
3.3 shows the results, with our Self Spring SpringRank (SSSR) which is the best
according to all the various metrics. Figure 3.2 is a pairwise comparison between
SSSR and the other principal rating systems, with the focus on the percentage of
times our algorithm beats the others on different specific test windows.

SR Elo W-L TS WHR MWSR SSSR

accuracy 0.399 0.646 0.565 0.647 0.648 0.644 0.649
agony 3.650 2.979 4.068 2.995 2.994 3.034 2.976
σa 0.590 0.581 - 0.586 0.580 0.642 0.646
σL -1.327 -1.437 - -1.272 -1.257 -1.259 -1.248

Table 3.3: Results for NBA dataset seasons 11-17: the table presents the results
for NBA regular seasons from 2011 to 2017. Each row is a different measure of the
performance and each column one of the various state-of-art ranking algorithms and our
moving window SpringRank and Self Spring SpringRank.
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(a) (b) (c)

(d) (e) (f)

Figure 3.2: Probabilistic edge prediction accuracy σa and σL. We compare the
predictive performances of SSSR against respectively EloRank (a and b), the moving
average SpringRank (c and d), WHR (e and f). The two probabilistic metrics σa and
σL have been chosen. Points above the diagonal, shown in black, are trials where SSSR
outperforms one of the other algorithms. The fraction for which each method is superior
are shown in plot legends.
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4. Variational SpringRank

Probabilistic models with latent variables have become a mainstay in modern
machine learning applications. With latent variables models, we posit a rich latent
structure that governs our observations, infer that structure from large datasets,
and use our inferences to summarize observations, draw conclusions about cur-
rent data, and make predictions about new data. Central to working with latent
variable models is the problem of computing the posterior distribution of the la-
tent structure. For many interesting models, computing the posterior exactly is
intractable and practitioners must then resort to approximate methods.

4.1 Approximate Inference

One of the core problems of modern statistics is to approximate difficult-to-
compute probability densities. This problem is especially important in Bayesian
statistics, which frames all inference about unknown quantities as a calculation
about the posterior. Modern Bayesian statistics relies on models for which the
posterior is not easy to compute and corresponding algorithms for approximating
them.

The general problem is framed in the following way: we consider a joint density
of latent variables z = z1:m and observations x = x1:n,

p(z,x) = p(x|z)p(z). (4.1)

All unknown quantities of interest are represented as latent random variables. This
includes parameters that might govern all the data, as found in Bayesian models,
and latent variables that are “local” to individual data points. In Bayesian models,
the latent variables help govern the distribution of the data. A Bayesian model
draws the latent variables from a prior density p(z) and then relates them to the
observations through the likelihood p(x|z).

21



22 CHAPTER 4. VARIATIONAL SPRINGRANK

The inference problem is to compute the conditional density of the latent variables
given the observations, i.e. computing the posterior p(z|x). This conditional
can be used to produce point or interval estimates of the latent variables, from
predictive densities of new data, and more. The conditional density can be written
using Bayes Theorem as

p(z|x) =
p(x, z)

p(x)
(4.2)

The denominator contains the marginal density of the observations, also called the
evidence. We calculate it by marginalizing out the latent variables from the joint
density,

p(x) =

∫
p(x, z)dz (4.3)

but for many models, this evidence integral is unavailable in closed form or requires
exponential time to compute. The evidence is what we need to compute the
conditional from the joint; this is why inference in such models is hard.

Exact Inference using conjugate priors We briefly explain here a typical
situation in which we do not need to approximate the posterior but we are able to
infer the exact one. In Bayesian probability theory, if the posterior p(z|x) are in the
same probability distribution family as the prior p(z), the prior and the posterior
are then called conjugate distributions, and the prior is called a conjugate prior for
the likelihood function. The simplest example involves the Gaussian family which
is conjugate with itself, or self-conjugate, with respect to a Gaussian likelihood
function. This can be easily derived from (4.2):

p(z|x) =
p(x|z)p(z)

p(x)
∝ p(x|z)p(z) (4.4)

remembering that the product of two Gaussians (both the prior and the likelihood
are Gaussians) is still a Gaussian. Knowing the form of the posterior, we are not
forced anymore to calculate the evidence p(x) to get the exact posterior (see [25]
for the explicit calculation using for example square completing technique). More
conjugacy relationships can be found in [25], we mention here some of the more
useful ones, such as a Bernoulli likelihood combined with a beta conjugate prior
or uniform likelihood with pareto conjugate prior.
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4.1.1 Markov Chain Monte Carlo

Most of the time, due to the impossibility of calculating the evidence in closed
form, solving the problem of finding the posterior distribution requires approxi-
mate inference. For decades, the dominant paradigm for approximate inference
has been MCMC [26, 27]. In MCMC, the basic idea is to build an ergodic Markov
chain on z whose stationary distribution is the posterior p(z|x). Then, we sample
from the chain to collect samples from the stationary distribution. Finally, we ap-
proximate the posterior with an empirical estimate constructed from (a subset of)
the collected samples. Landmark developments include the Metropolis-Hastings
algorithm [28, 26], the Gibbs sampler [29] and its application to Bayesian statistics
[27]. Despite its key role in modern Bayesian statistics, MCMC sampling is a broad
field and it is out of the scope of this thesis. For a more complete overview of this
topic the reader had better refer to the above citations.

4.1.2 Variational Inference

Rather than using sampling, the main idea behind variational inference is to
use optimization. In order to measure how much one probability distribution
is different from a second, reference one, we start recalling the definition of the
Kullback-Leibler divergence between q(z) and p(z|x):

KL(q||p) = Eq
[
log

q(z)

p(z|x)

]
. (4.5)

Let’s notice that KL divergence is a distribution-wise asymmetric measure and
thus does not qualify as a statistical metric of spread (it also does not satisfy the
triangle inequality). We start defining a family of approximate densities D over
the latent variables. Then, we try to find the member of the family that minimizes
the Kullback-Leibler (KL) divergence to the exact posterior,

q∗(z) = argmin
q(z)∈D

KL(q(z)||p(z|x)) (4.6)

so we approximate the posterior p(z|x) with q∗(z).

Variational inference thus turns the inference problem into an optimization
problem. The quality of the approximation and the complexity of the optimiza-
tion are clearly related with our choice of the set D. One of the key ideas behind
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variational inference is to choose D to be flexible enough to capture a density close
to p(z|x), but simple for efficient optimization.
It is important to notice that MCMC and variational inference are different ap-
proaches to solving the same problem. MCMC algorithms sample a Markov chain
while variational algorithms solve an optimization problem with the common aim
of approximating the posterior.

The Evidence Lower Bound The main problem with (4.6) is that the objec-
tive is not computable since we do not have the evidence log p(x) related with
(4.5) through (4.2) (this is the reason why we are applying variational inference
from the beginning). In fact using the definition in (4.5) we obtain.

KL(q(z)||p(z|x)) = Eq [log q(z)]− Eq [log p(z|x)]

= Eq [log q(z)]− Eq [log p(z,x)] + Eq [log p(x)] (4.7)

where the dependence on log p(x) is revealed. Because we cannot compute the
KL, we optimize an alternative objective function, equivalent to the KL up to p(x)

–which is a constant with respect to q– that we call ELBO:

ELBO(q) = Eq [log p(x, z)]− Eq [log q(z)] = Eq
[
log

p(x, z)

q(z)

]
, (4.8)

here ELBO means Evidence LOwer Bound since, remembering that KL is not nega-
tive, we have from (4.7) and (4.8):

log p(x) = KL(q(z)||p(z|x)) + ELBO(q) ≥ ELBO(q). (4.9)

We want to emphasize again that the ELBO is nothing else than the negative KL

divergence in (4.5) plus log p(x), which is a constant with respect to q. Then max-
imizing the ELBO with respect to q is equivalent to minimizing the KL divergence:

q∗(z) = argmax
q(z)∈D

(
ELBO(x, p, q)

)
= argmin

q(z)∈D
KL
(
q(z)||p(z|x)

)
(4.10)

Rewriting the ELBO (4.8) as a sum of the expected log likelihood of the data and
the KL divergence between the prior p(z) and q(z),

ELBO(q) = Eq [log p(z)] + Eq [log p(x|z)]− Eq [log q(z)] (4.11)

= Eq [log p(x|z)]− KL(q(z)||p(z)),



CHAPTER 4. VARIATIONAL SPRINGRANK 25

gives intuitions about the optimal variational density. The first term is an expected
likelihood; it encourages densities that place their mass on configurations of the
latent variables that explain the observed data. The second term is the negative
divergence between the variational density and the prior; it encourages densities
close to the prior.
Usually the variational approximation q is parametrized by some parameters λ ∈
Rd and the above optimization problem (4.10) can be rewritten as

λ∗ = argmax
λ

(
ELBO(x, p, qλ)

)
(4.12)

with q∗λ(z) = qλ∗(z).

However, in its general form the lower bound ELBO(x, p, q) is a functional in
terms of q, in other words, a mapping that takes as input a function q(z), and
returns as output the value of the functional. This leads naturally to the concept
of the functional derivative, which in analogy to the function derivative, gives
the functional changes for infinitesimal changes to the input function. This area of
mathematics is called calculus of variations [30] and has been applied to many areas
of mathematics, physical sciences and engineering, for example fluid mechanics,
heat transfer, and control theory. Although there are no approximations in the
variational theory, variational methods can be used to find approximate solutions
in Bayesian inference problems. This is done by assuming that the functions over
which optimization is performed have specific forms. For example, we can assume
only quadratic functions or functions that are linear combinations of fixed basis
functions. For Bayesian inference, a particular form that has been used with great
success is the factorized one. The idea for this factorized approximation stems
from theoretical physics where it is called mean field theory [31].

MCMC or Variational Inference?
When should a statistician use MCMC and when should he use variational infer-
ence? Generally MCMC methods tend to be more computationally intensive than
variational inference but they also provide guarantees of producing (asymptoti-
cally) exact samples from the target density [32]. Variational inference does not
enjoy such guarantees –it can only find a density close to the target– but tends to
be faster than MCMC. Because it rests on optimization, variational inference easily
takes advantage of methods like stochastic optimization [33] and distributed opti-
mization.
Thus, variational inference is suited to large data sets and scenarios where we want
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to quickly explore many models; MCMC is suited to smaller data sets and scenarios
where we happily pay a heavier computational cost for more precise samples. For
example, we might use MCMC in a setting where we spent 20 years collecting a small
but expensive data set, where we are confident that our model is appropriate, and
where we require precise inferences. We might use variational inference when fit-
ting a probabilistic model of text to one billion text documents and where the
inferences will be used to serve search results to a large population of users. In
this scenario, we can use distributed computation and stochastic optimization to
scale and speed up inference, and we can easily explore many different models of
the data.

4.1.3 Mean-Field variational family

We have seen above that one of the key aspect of variational inference is the
choice of the variational family D from which the variational approximation q is
taken. Clearly, the complexity of the family determines the complexity of the
optimization; it is more difficult to optimize over a complex family than a simple
family. On the other hand, a broader and more complex family will result into a
better approximation q of the posterior.
We focus here on the mean field variational family, where the latent variables are
mutually independent and each governed by a distinct factor in the variational
density. A generic member of the mean field variational family is

qλ(z) =
n∏
j=1

qλj(zj) (4.13)

Each latent variable zj is governed by its own variational factor, the density qλj(zj).
We emphasize that the variational family is not a model of the observed data –
indeed, the data x does not appear in (4.13). Instead, it is the ELBO, and the
corresponding KL minimization problem, that connects the fitted variational den-
sity to the data and model.
Moreover, choosing a factorized distribution means neglecting, at least in first
approximation, all the correlations between the variables in the posterior distribu-
tion, but, as just said, correlation still enters into play when we minimize the KL,
where correlations between variables are instead present.
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4.2 Expectation Maximization

We present here another technique which we will use in the following: the Ex-
pectation Maximization algorithm (EM). EM is nothing else than an iterative
algorithm for Maximum Likelihood estimation that has a number of advantages
and has become a standard methodology for solving statistical signal processing
problems. However, the EM algorithm has certain requirements that seriously
limit its applicability to complex problems. More recently, to relax some of these
limiting requirements, variational EM –i.e EM exploiting variational inference–
has been developed and it is gaining rapidly popularity.

Suppose x are the observations and θ the unknown parameters of a model
that generates x. For the sake of clarity, in the following we will write p(x|θ)

when considering θ as random variables and p(x;θ) = pθ(x) –called likelihood as
a function of θ– when we want to imply that θ are parameters. Since in many
cases of interest direct assessment of the likelihood function p(x;θ) is complex and
is either difficult or impossible to compute it directly or optimize it, we introduce
the hidden variables z, for which p(x|z) is easy to compute. In this framework we
call p(x;θ) the marginal likelihood and we have

p(x;θ) =

∫
p(x, z;θ)dz =

∫
p(x|z;θ)p(z;θ)dz (4.14)

and as seen before this integral -note the parallel with the evidence (4.3) in the
variational terminology- is most of the time impossible to compute.
Similarly to (4.9) we can write then

log p(x;θ) = F (q,θ) + KL(q||p) (4.15)

with F (q,θ) -i.e the ELBO in the variational context- defined as

F (q,θ) = Eq
[
log

p(x, z;θ)

q(z)

]
(4.16)

and with the KL divergence defined as before

KL(q||p) = Eq
[
log

q(z)

p(z|x;θ)

]
(4.17)

where q(z) is any probability density function.
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As seen before, since KL(q||p) ≥ 0,

log p(x;θ) = F (q,θ) + KL(q||p) ≥ F (q,θ), (4.18)

in other words, F (q,θ) is a lower bound of the (marginal) log-likelihood. Equality
holds only when KL(q||p) = 0, which implies p(z|x;θ) = q(z), see (4.17). The EM
algorithm can be seen in the light of decomposition in (4.15) as the maximization
of the lower bound F (q,θ) with respect to the density q and the parameters θ.
In particular, the EM is a two step iterative algorithm that maximizes the lower
bound F (q,θ) and hence the (marginal) log-likelihood. Assume that the current
value of the parameters is θOLD. In the E-step the lower bound F (q,θOLD) is
maximized with respect to q(z). Of course, looking at (4.15), this is equivalent
to minimize KL(q||p) that, as we just seen, happens when KL(q||p) = 0, in other
words, when q(z) = p(z|x;θOLD). In this case the lower bound is equal to the
log-likelihood. In the subsequent M-step, q(z) is held fixed and the lower bound
F (q,θ) is maximized with respect to θ to give some new value θNEW . This will
cause the lower bound to increase and as a result, the corresponding log-likelihood
will also increase.
Since q(z) was determined using θOLD and is held fixed in the M-step, it will not
be equal to the new posterior p(z|x;θNEW ) and hence the KL distance will not be
zero. Thus, the increase in the log-likelihood is greater than the increase in the
lower bound.
If we substitute q(z) = p(z|x;θOLD) into the lower bound and expand (8) we get

F (q,θ) =

∫
p(z|x;θOLD) log p(x, z;θ)dz −

∫
p(z|x;θOLD) log p(z|x;θOLD)dz

(4.19)

= Q(θ,θOLD) + const

where const is simply the second term -i.e the entropy of p(z|x;θOLD)- which does
not depend on θ. The function

Q(θ,θOLD) =

∫
p(z|x;θOLD) log p(x, z;θ)dz (4.20)

is the expectation of the log-likelihood of the complete data (observations + hid-
den variables) which is maximized in the M-step.
In summary, the EM algorithm is an iterative algorithm involving the following
two steps:
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Algorithm 1 EM
1: repeat
2: E-step: Compute p(z|x;θOLD)
3: M-step: Evaluate θNEW = argmaxθQ(θ,θOLD)
4: θOLD = θNEW

5: until convergence

Furthermore, we would like to point out that the EM algorithm requires that
P (z|x;θ) is explicitly known, or at least we should be able to compute the con-
ditional expectation (4.20) Ep(z|x;θOLD) [log p(x, z;θ)]. In other words, we have to
know the conditional pdf of the hidden variables given the observations in order
to use the EM algorithm. Even if p(z|x;θ) is in general much easier to infer than
p(x;θ), in many interesting problems this is not possible and thus the EM algo-
rithm is not applicable.

Variational Expectation Maximization
The main problem in the EM algorithm just described above is clearly the com-
putation of p(z|x;θ) in the E-step. One can bypass the requirement of exactly
knowing p(z|x;θ) by assuming an appropriate q(z) in the decomposition of (4.15).
Clearly this brings us back to variational inference. In the E-step q(z) is found
such that it maximizes F (q,θ) keeping θ fixed (4.18). This is the exact same
problem we were trying to solve before. We already know that to perform this
maximization, a particular form of q(z) must be assumed. In certain cases it is
possible to assume knowledge of the form of q(z;λ), where λ is a set of parame-
ters. Thus, the lower bound F (λ,θ) becomes a function of these parameters and
is maximized with respect to λ in the E-step and with respect to θ in the M-step.

4.3 Variational Spring Rank Model

Taking inspiration from [34] we want to develop a dynamic Bayesian model for
ranking which captures the evolution of ranks given a sequentially ordered sequence
of observations of pairwise directed interactions among the various individuals. In
the above notation the observable data x are contained in A, while the hidden
variable z is the score s. Of course we are interested in the posterior distribution
p(s|A), which is in general (and in our case unfortunately!) uncomputable. We
will use then variational inference to approximate p(s|A) as well as possible.
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4.3.1 From static to dynamic Variational SpringRank

We start recalling the main assumptions made while building the probabilistic
generative model of static SpringRank in [1]. The paper assumes the following
prior for the ranks:

p(s) ∝
∏
i∈V

exp(−β
2

(si − 1)2) ∼ N(1,
1√
β
1) (4.21)

with β a simple parameter, the inverse temperature. The natural choice for the
likelihood is instead

p(A|s) =
∏
i,j

Pois(λij) =
∏
i,j

Pois(ce−
β
2
Hij) (4.22)

with Hij = (si − sj − 1)2 and where c is only the density parameter.

We want now to extend this static model toward a dynamic framework, where
the ranks st evolve through time. From now on so st ∈ RN will indicate the vector
containing all the scores at time t. Therefore at time t the node i ∈ {1, . . . , N}
has rank sti. Similarly, the tensor A ∈ NT×N×N contains the data, with Atij

the (directed) observations at time t from node i toward j. The main idea is to
introduce a time dynamic using an autoregressive process involving some latent
variables. We define the model as follow:

• prior

p(s,µ) = p(s0,µ0)
T∏
t=1

p(st,µt|st−1,µt−1)

= p(s0,µ0)
T∏
t=1

p(st|µt)p(µt|µt−1) (4.23)

where the conditional distributions are:

st|µt ∼ N (µt, ρ
2
1) (4.24)

and
µt+1|µt ∼ N (µt, σ

2
1) (4.25)

i.e. the underlying variables µt assume an autoregressive process form, and
the st is generated like in the static model, but with mean µt
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. . . µt µt+1 . . .

st st+1

At At+1

Figure 4.1: Graphical representation of the dynamic model

• likelihood
p(A|s,µ) =

∏
t,i,j

Pois(λtij = ce−
β
2
Htij)(Atij) (4.26)

where Htij := (sti − stj − 1)2

The generative model is represented in figure 4.1.

As pointed out above, the autoregressive process is not running on the ranks
themselves, but rather in their means.

Variational Approximation
Clearly, we are interested in the posterior distribution of the ranks given the data
observed p(s,µ|A). The posterior of the model above anyway has not a simple
form and it is not analytically computable. Therefore, one possible approach to
solve this problem consists in using a variational approximation q. Similarly to
[34], we use the following variational approximation:

q(s,µ) =
∏
t,i

q(sti|θti, η2ti) ·
∏
t,i

q(µti|µ̂:i) (4.27)

where we emphasise the dependence on all the times t for µ̂:i = (µ̂1i . . . µ̂T i) ∈ RT .
The specific shape of the q in (4.27) is

sti|θti, ηti ∼ N (θti, η
2
ti) (4.28)

µ̂ti|µti ∼ N (µti, ν̂ti) (4.29)
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where, similarly to [34], for (4.29) we consider a Gaussian with mean and variance
given by running a Kalman filter and smoother [35] on µ, µ̂, with ν̂ti extra varia-
tional parameters regulating the variance in the Kalman structure.
As regard the filtering we have:

mt ≡ E(µt|µ̂1:t) =

(
ν̂2
t

Vt−1 + σ2 + ν̂2
t

)
mt−1 +

(
1− ν̂2

t

Vt−1 + σ2 + ν̂2
t

)
µ̂t

Vt ≡ E((µt −mt)
2|µ̂1:t) =

(
ν̂2
t

Vt−1 + σ2 + ν̂2
t

)
(Vt−1 + σ2) (4.30)

and for the smoothing:

m̃t−1 ≡ E(µt−1|µ̂1:T ) =

(
σ2

Vt−1 + σ2

)
mt−1 +

(
1− σ2

Vt−1 + σ2

)
m̃t

Ṽt−1 ≡ E((µt−1 − m̃t−1)
2|µ̂1:T ) = Vt−1 +

(
Vt−1

Vt−1 + σ2

)2

(Ṽt − (Vt−1 + σ2)).

(4.31)

Then we obtain:
µt|µ̂1:T ∼ N (m̃t, Ṽt) (4.32)

To recap we have θt, ηt, µ̂t and ν̂t as variational parameters and ρ, σ, β, c as
model hyperparameters.

Reduction of the variables
Since the structure of our problem is simpler than the one in [34], we can also try
to get rid of some of the variables introduced above. Given that we are interested
in the ranks st and in order to reduce the number of parameters, instead of making
µt evolve through time we can directly run the Kalman filter on st, removing µt
from the model (see Figure 4.2). The structure of the model is still the same

q(s) =
∏
t,i

q(sti|ŝ:i) (4.33)

with ŝti corresponding to the previous µ̂ti. The variational parameters are then
only ŝ and ν̂ (ν̂ has same role as before), while the model parameters are σ, β
and c. In the following we will derive the equations for the more general extended
model, but all the expressions and techniques presented below have been tried also
for the reduced model, which has revealed most of the time to be not only faster
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but also more accurate than the former.

. . . st st+1 . . .

At At+1

Figure 4.2: Graphical representation of the reduced form dynamic model
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Computation of the ELBO
We can explicitly calculate the ELBO for this model and apply direct optimization
to find the best approximation q (of the form described above) of the unknown
posterior p(s,µ|A). If a closed form for the ELBO is available then, it is advis-
able to directly optimize it without passing from stochastic approximations of the
expected values. We start from equations 4.23, 4.26 and 4.27 to compute

ELBO(q) = Eq[log p(s,µ)] + Eq[log p(A|s,µ)]− Eq[log q(s,µ)] (4.34)

First addend: using (4.24), (4.25), (4.27) and (1):

Eq[logp(s,µ)] =

∫ ∑
t,i

log[p(sti|µti)p(µti|µt−1i)]q(s,µ)dsdµ

=

∫ ∑
t,i

log[
1√
2πρ2

e
−(sti−µti)

2

2ρ2 ]q(s,µ)dsdµ

+

∫ ∑
t,i

log[
1√

2πσ2
e

−(µti−µt−1,i)
2

2σ2 ]q(µ)dµ

= − 1

2ρ2

∫ ∑
t,i

[(sti − µti)2]q(s,µ)dsdµ

− 1

2σ2

∫ ∑
t,i

[(µti − µt−1,i)2]q(µ)dµ− 1

2
TN log(4π2σ2ρ2)

= − 1

2ρ2

∑
t,i

(η2ti + Ṽti + (θti − m̃ti)
2)

− 1

2σ2

∑
t,i

(Ṽti + Ṽt−1i + (m̃ti − m̃t−1,i)
2)− 1

2
TN log(4π2σ2ρ2) (4.35)

Second addend: using equations 1, 2:

Eq[log p(A|s,µ)] = Eq

[∑
t,i,j

log(
λ
Atij
tij e

−λtij

Atij!
)

]
=
∑
t,i,j

Eq
[
Atij(log c− β

2
s2tij)− ce−

β
2
s2tij

]
+ C

=
∑
t,i,j

Eq
[
−βAtij

2
s2tij − ce−

β
2
s2tij

]
+
∑
t,i,j

Atij log c+ C

= −β
2

∑
t,i,j

Atij
(
η2ti + η2tj + (θti − θtj − 1)2

)
+

− c
∑
t,i,j

1√
1 + β(η2ti + η2tj)

exp

(
−β

2
· (θti − θtj − 1)2

1 + β(η2ti + η2tj)

)
+ log c

∑
t,i,j

Atij + C

(4.36)
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Third addend: the third addend is just the entropy of a factorized gaussian. In
fact in the variational distribution, given the "variational observations" µ̂ti, the la-
tent variables µti are independent gaussian with mean, variance µ̃ti, Ṽti. Therefore
we obtain:

−Eq[log q(s,µ)] = H(q) =
1

2

∑
t,i

log(2πeη2ti) + log(2πeṼti) (4.37)

The final results is

ELBO(q) = − 1

2ρ2

∑
t,i

(η2ti + Ṽti + (θti − m̃ti)
2)− 1

2σ2

∑
t,i

(Ṽti + Ṽt−1i + (m̃ti − m̃t−1,i)
2)+

+
∑
t,i,j

−β
2
Atij

(
η2ti + η2tj + (θti − θtj − 1)2

)
+

− c 1√
1 + β(η2ti + η2tj)

exp

(
−β

2
· (θti − θtj − 1)2

1 + β(η2ti + η2tj)

)
+

+
1

2

∑
t,i

log(2πeη2ti) + log(2πeṼti)+

− 1

2
TN log(4π2σ2ρ2) + log c

∑
t,i,j

Atij + const (4.38)

4.3.2 Modifying the likelihood

The assumptions underlying the SpringRank model are not satisfied in some
real life experimental settings. While studying animal behaviour, for example, we
assume that individuals only interact with others close to them in ranking. Also
considering social relations we can reasonably consider the bare existence of an
interaction as an useful information of the ranking or social status. All this a
priori knowledge on the problem is exploited in the construction of the likelihood
of the SpringRank generative model. Anyway, when these assumptions are not
fulfilled, we can easily change the shape of the likelihood and adapt it to the
specific application. In particular, in many datasets the bare fact of seeing an
interaction between two nodes does not mean that the two nodes are close in rank.
Taking for example sport contexts, every team plays against another one following
a random schedule; the same for social networks, where a "follow" relationship
can be shared between nodes quite far in the ranking. In particular, the exponent
in the likelihood (4.26) −β

2
(sti − stj − 1)2 must be corrected. The square, with

the minus in front of it, in fact penalises all the directed interactions i → j, i
beats j, for every couple i and j far in ranking. Instead, we look for the opposite



36 CHAPTER 4. VARIATIONAL SPRINGRANK

behaviour in sports, allowing strong teams to collect several victories against the
weakest ones. We propose then a different likelihood, given as follows:

p(A|s,µ) =
∏
t,i,j

Pois

(
λtij = c exp

(
β

2
(sti − stj)

))

In this way if si � sj then λ is big and we expect a high number of victories
of i against j. Looking at the form of the ELBO, we see that the likelihood is
just involved in the second term. For this reason we can rewrite it very easily.
With simple calculations, similar to the ones above, the second addend of (4.34)
becomes:

Eq[log p(A|s,µ)] = log c
∑
t,i,j

Atij+
β

2

∑
t,i,j

Atij(θti−θtj)−c
∑
t,i,j

exp

(
β

2
(θti − θtj) +

β2

8
(η2ti + η2tj)

)

and the final ELBO becomes

ELBO(q) = − 1

2ρ2

∑
t,i

(η2ti + Ṽti + (θti − m̃ti)
2)− 1

2σ2

∑
t,i

(Ṽti + Ṽt−1i + (m̃ti − m̃t−1,i)
2)

+
β

2

∑
t,i,j

Atij(θti − θtj)− c
∑
t,i,j

exp

(
β

2
(θti − θtj) +

β2

8
(η2ti + η2tj)

)
+

1

2

∑
t,i

log(2πeη2ti) + log(2πeṼti)

− 1

2
TN log(4π2σ2ρ2) + log c

∑
t,i,j

Atij + const (4.39)
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4.4 Binomial Likelihood

Specially when considering sport contexts, the focus is not on predicting the
existence of the matches, but on forecasting their outcomes. That is because we
know the exact random schedule of the championship from the beginning, while
of course we do not know the future results. From this perspective, it seems quite
reasonable to modify our model acting once again on the likelihood. In particular,
if we exactly know the total number of matches between i and j at time t and we
only need to partition this number into the amount of victories of i against j and
viceversa. The natural distribution for this likelihood is then a binomial:

p(A|s,µ) =
∏
tij

Bin(ptij, ntij) (4.40)

where ptij = 1

1+e−2β(si−sj)
and ntij = Atij + Atji. We rewrite then the second term

of the likelihood:

Eq[log p(A|s,µ)] =

= Eq

[∑
tij

log

[(
Atij + Atji

Atij

)(
1

1 + e−2β(si−sj)

)Atij ( 1

1 + e−2β(sj−si)

)Atji]]
=

= −2
∑
tij

AtijEq
[
log
(
1 + e−2β(si−sj)

)]
(4.41)

Unfortunately this integral is not computable in closed form and we cannot simply
apply gradient ascent as before to maximize the ELBO.

4.4.1 Black-Box Variational inference

Since integral (4.41) is not computable in closed form we need to find another
way to maximize the ELBO, different from simple gradient ascent. The idea here
is to use instead stochastic optimization, which maximize a function using noisy
estimates of its gradient. To do that we need to rewrite the derivative of the
objective as an expectation with respect to the variational approximation and then
sample from the variational approximation to get noisy but unbiased gradients,
which we use to update our parameters.

Stochastic gradient derivation
To optimize the ELBO with stochastic optimization, we need to develop an unbiased
estimator of its gradient which can be computed from samples from the variational
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distribution. The key idea is that the gradient of the ELBO can be written as an
expectation with respect to the variational distribution. We start by differentiating
the ELBO definition (4.8) with respect to the variational parameters,

∇λELBO = ∇λEqλ [log p(x, z)− log qλ(z)]

= ∇λ
∫

(log p(x, z)− log qλ(z)) qλ(z)dz

=

∫
∇λ [(log p(x, z)− log qλ(z)) qλ(z)] dz

=

∫
∇λ [log p(x, z)− log qλ(z)] qλ(z)dz

+

∫
∇λqλ(z) (log p(x, z)− log qλ(z)) dz

= −Eq [∇λ log qλ(z)]

+

∫
∇λqλ(z) (log p(x, z)− log qλ(z)) dz (4.42)

where we have exchanged derivatives with integrals via the dominated convergence
theorem and used ∇λ [log p(x, z)] = 0. The first term in (4.42) is zero in fact

Eq [∇λ log qλ(z)] = Eq
[
∇λqλ(z)

qλ(z)

]
=

∫
∇λqλ(z)dz

= ∇λ
∫
qλ(z)dz = ∇λ1 = 0. (4.43)

To simplify the second term, first observe that ∇λ [qλ(z)] = ∇λ [log qλ(z)] qλ(z).
This fact gives us the gradient as an expectation,

∇λELBO =

∫
∇λqλ(z) (log p(x, z)− log qλ(z)) dz

=

∫
∇λ log qλ(z) (log p(x, z)− log qλ(z)) qλ(z)dz

= Eq [∇λ log qλ(z) (log p(x, z)− log qλ(z))] . (4.44)

Now we can compute noisy unbiased gradients of the ELBO with Monte Carlo
samples from the variational distribution,

∇λELBO ≈
1

S

S∑
i=1

∇λ log qλ(zs)
(

log pi(x, zs)− log qλ(zs)
)
, (4.45)

where zs ∼ qλ(z).
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Note also that the score function ∇λ log qλ(z) and the sampling algorithms depend
only on the variational distribution, not the underlying model. Thus one can easily
build up a collection of these functions for various variational approximations and
reuse them in a package for a variety of models. Further this method doesn’t
require any assumptions about the form of the model, only that the practitioner
can compute the log of the joint p(x, zs). This algorithm significantly reduces the
effort needed to implement variational inference in a wide variety of models.

Application to our binomial model
As explained above, in the variational model with binomial likelihood we cannot
compute the ELBO in closed form so we will use the black-box argument just de-
scribed. More precisely, the problem is only in the second term of the ELBO in the
form (4.11) -i.e. the likelihood term indeed- so we can adapt (4.44):

∇λELBO = ∇λ [Eqλ [log p(z)] + Eqλ [log p(x|z)]− Eqλ [log qλ(z)]]

= ∇λEqλ [log p(z)] +∇λ
∫

log(p(x|z))qλ(z)dz −∇λEqλ [log q(z)]

= ∇λEqλ [log p(z)] +

∫
∇λ [log(p(x|z))qλ(z)] dz −∇λEqλ [log qλ(z)]

= ∇λEqλ [log p(z)] +

∫
log p(x|z)∇λ [log(qλ(z))] qλ(z)dz −∇λEqλ [log qλ(z)]

= ∇λEqλ [log p(z)] + Eqλ [log p(x|z)∇λ log qλ(z)]−∇λEqλ [log qλ(z)]

(4.46)

where we haven’t touched the first and third terms since we know the exact ex-
pression of the two expectations, see (4.35) and (4.37). We also emphasized the
dependence of q on the variational parameters λ, with λ equal to θ, η, µ̂ and ν̂
in our case. Applying (4.46) to our problem we obtain:

∇λELBO = ∇λ [Eqλ [log p(s,µ)] + Eqλ [log p(A|s,µ)]− Eqλ [log q(s,µ)]]

= ∇λEqλ [log p(s,µ)] + Eqλ [log p(A|s,µ)∇λ log qλ(s,µ)]−∇λEqλ [log qλ(s,µ)]

(4.47)

We can finally use this stochastic gradient in a stochastic optimization algorithm
to optimize the variational parameters.
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4.4.2 Reducing the variance

The main problem with the above technique is that, since we are using stochastic
estimates of the gradient, the variance can be high. As shown in [36], reducing
the variance of the gradient estimator is essential to the fast convergence of our
algorithm. We present here two strategies for controlling the variance that we
used to improve our model. The first is based on Rao-Blackwellization [37], which
exploits the factorization of the variational distribution. The second is based on
control variates [38, 39], using the log probability of the variational distribution.

Rao-Blackwellization Rao-Blackwellization [37] reduces the variance of a ran-
dom variable by replacing it with its conditional expectation with respect to a
subset of the variables. This generally requires analytically computing problem-
specific integrals. Here we show how to Rao-Blackwellize the estimator for each
component of the gradient without needing to compute model-specific integrals.
In the simplest setting, Rao-Blackwellization replaces a function of two variables
with its conditional expectation. Consider two random variables, X and Y , and a
function J(X, Y ). Our goal is to compute its expectation E [J(X, Y )] with respect
to the joint distribution of X and Y . Defining Ĵ(X) = E [J(X, Y )|X)] we can
see that E

[
Ĵ(X)

]
= E [J(X, Y )], which means that Ĵ(X) can be used in place of

J(X, Y ) in a Monte Carlo approximation of E [J(X, Y )]. What makes Ĵ(X) more
suitable than J(X, Y ) anyway is its lower variance, in fact

Var
[
Ĵ(X)

]
= E

[
Ĵ(X)2

]
− E

[
Ĵ(X)

]2
= E

[
Ĵ(X)2

]
− E [E [J(X, Y )|X]]2

= E
[
Ĵ(X)2

]
+ Var [J(X, Y )]− E

[
J(X, Y )2

]
= Var [J(X, Y )]− E

[
J(X, Y )2 − Ĵ(X)2

]
= Var [J(X, Y )]− E

[
(J(X, Y )− Ĵ(X))2

]
(4.48)

where for the last equality we used

−2E
[
(J(X, Y )Ĵ(X)

]
= −2E

[
(J(X, Y )E [J(X, Y )|X)]

]
= −2E

[
E [J(X, Y )E [J(X, Y )|X] |X]

]
= −2E

[
E [J(X, Y )|X]E [J(X, Y )|X]

]
= −2E

[
Ĵ(X)2

]
(4.49)
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In our problem we want to estimate the gradient of the ELBO function. In
the case we are using the mean-field variational family, we have that each ran-
dom variable zi is independent and governed by its own variational distribution,
qλ(z) =

∏n
i=1 q(zi;λi). Consider the i-th component of the gradient. Let q(i) be

the distribution of variables in the model that depend on the i-th variable, i.e., the
Markov blanket of zi; and let pi(x, z(i)) be the terms in the joint that depend on
those variables. To compute the Rao-Blackwellized estimators, we need to com-
pute conditional expectations. Due to the mean field-assumption, the conditional
expectation simplifies due to the factorization

E [J(X, Y )|X] =

∫
J(x, y)p(x, y)dy∫

p(x, y)dy
=

∫
J(x, y)p(x)p(y)dy∫

p(x)p(y)dy

=

∫
J(x, y)p(y)dy = Ey [J(X, Y )] (4.50)

Therefore, to construct a lower variance estimator when the joint distribution
factorizes, all we need to do is integrate out some variables. We start writing the
i-th component of the gradient

∇λiELBO = Eq1 ...Eqn
[
∇λi log qi(zi;λi)

(
log p(x, z)−

n∑
j=1

log qj(zj;λj)
)]

= Eq1 ...Eqn
[
∇λi log qi(zi;λi)

(
log pi(x, z(i)) + log p−i(x, z)−

n∑
j=1

log qj(zj;λj)
)]

= Eqi
[
∇λi log qi(zi;λi)

(
Eq−i

[
log pi(x, z(i))

]
− log qi(zi;λi)

+ Eq−i
[

log p−i(x, z)−
n∑

j=1, i6=j

log qj(zj;λj)
])]

= Eqi
[
∇λi log qi(zi;λi)

(
Eq−i

[
log pi(x, z(i))

]
− log qi(zi;λi) + Ci

)]
= Eqi

[
∇λi log qi(zi;λi)

(
Eq−i

[
log pi(x, z(i))

]
− log qi(zi;λi)

)]
= Eq(i)

[
∇λi log qi(zi;λi)

(
log pi(x, z(i))− log qi(zi;λi)

)]
(4.51)

where we have leveraged the mean field assumption and made use of the identity
for the expected score (4.43). This means we can Rao-Blackwellize the gradient
of the variational parameter λi with respect to the the latent variables outside of
the Markov blanket of zi without needing model specific computations.
Finally, we construct a Monte Carlo estimator for the gradient of λi using samples
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from the variational distribution,

1

S

S∑
i=1

∇λi log qi(zs;λi)
(

log pi(x, zs)− log qi(zs;λi)
)
, (4.52)

where zs ∼ q(i)(z;λ)

This Rao-Blackwellized estimator for each component of the gradient has lower
variance.

Control Variates As we saw above, variance reduction methods work by replac-
ing the function whose expectation is being approximated by Monte Carlo with
another function that has the same expectation but smaller variance. That is, to
estimate Eq[f ] via Monte Carlo we compute the empirical average of f̂ where f̂ is
chosen so Eq[f ] = Eq[f̂ ] and Varq[f ] > Varq[f̂ ]. We start defining the term con-
trol variate [38]. A control variate is simply a family of functions with equivalent
expectation. Consider for example a function h, which has a finite first moment,
and a scalar a. Define f̂ to be

f̂(z) := f(z)− a
(
h(z)− E [h(z)]

)
. (4.53)

This is a family of functions, indexed by a, and note that, by construction,
Eq[f̂(z)] = Eq[f ] as required. Given a particular function h, we can choose a
to minimize the variance of f̂ . First, using basic properties of the variance, we can
write

Var(f̂) = Var(f) + a2Var(h)− 2aCov(f, h). (4.54)

This equation implies that good control variates have high covariance with the
function whose expectation is being computed.
Taking the derivative of Var(f̂) with respect to a and setting it equal to zero gives
us the value of a that minimizes the variance,

a∗ =
Cov(f/h)

Var(h)
. (4.55)

With Monte Carlo estimates from the distribution, we can estimate a∗ with the
ratio of the empirical covariance and variance. We now apply this method to Black
Box Variational Inference. To maintain the generic nature of the algorithm, we
want to choose a control variate that only depends on the variational distribution
and for which we can easily compute its expectation. Meeting these criteria, we
choose h to be the score function of the variational approximation, ∇λ log q(z),
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which always has expectation zero. With this control variate, we have a new
Monte Carlo method to compute the Rao-Blackwellized noisy gradients of the
ELBO. For the i-th component of the gradient, the function whose expectation is
being estimated is the one found in 4.44

fi(z) = ∇λi log q(z;λi) (log p(x, z)− log q(z;λi)) (4.56)

and we defined its control variates

hi(z) = ∇λi log q(z;λi). (4.57)

The estimate for the optimal choice for the scaling is given by summing over the
covariance and variance for each of the ni dimensions of λi. Letting the d-th
dimension of fi and hi be fdi and hdi respectively. The optimal scaling for the
gradient of the ELBO is given by

â∗i =

∑ni
d=1

ˆCov(fdi , h
d
i )∑ni

d=1 V̂ar(hdi )
(4.58)

This gives us the following Monte Carlo method to compute noisy gradients using
S samples

∇̂λiELBO =
1

S

S∑
s=1

∇λ log qi(zs;λi)
(

log pi(x, zs)− log qi(zs;λi)− â∗i
)
,

where zs ∼ q(i)(z;λ) (4.59)

4.4.3 Reparameterization trick

We complete this part mentioning also another technique we used in this work
to solve the problem of calculating ∇λEqλELBO. This method exploits a simple
reparameterization trick to pass the gradient inside the expectation, returning a
much more tractable expression.
Suppose we want to compute

∇φf(ω, φ) = ∇φEq(t|x,φ) log(x|t, ω) (4.60)

where t ∼ q(t|x, φ) = N (m, s2). Now we write t = s ε + m = g(ε, x, φ), with
ε ∼ p(ε) = N (0, 1). Since we can simply pass from samples extracted from q(t)

to samples extracted from p(ε) through the deterministic function g, using this



44 CHAPTER 4. VARIATIONAL SPRINGRANK

change of variables we have

∇φf(ω, φ) = ∇φEq(t|x,φ) log(x|t, ω)

= ∇φEp(ε) log(x|g(ε, x, φ), ω)

=

∫
p(ε)∇φ log(x|g(ε, x, φ), ω)

= Ep(ε) [∇φ log(x|g(ε, x, φ), ω)] (4.61)

where we use the fact that p(ε) does not depend anymore on φ. So now, sampling
from a standard normal p(ε) we can obtain the stochastic approximation

∇̃f(ω, φ) =
1

S

S∑
s=1

∇φ log(x|g(εs, x, φ), ω) where εs ∼ N (0, 1). (4.62)

Going back to our problem ∇λEqλELBO: consider λ = (µ, σ) and z ∼ q(µ,σ)(z) =

N (z|µ, σ), then we can write z = σε+ µ, with ε ∼ p(ε) = N (0, 1)

∇(µ,σ)ELBO = ∇(µ,σ)Eq(µ,σ)
[
log p(x, z)− log q(µ,σ)(z)

]
= EN (ε|0,1)

[
∇(µ,σ)

[
log p(x, σε+ µ)− log q(µ,σ)(σε+ µ)

] ]
. (4.63)

Once again then we can obtain a stochastic approximation of the desired gradient
sampling from a standard normal

∇̃(µ,σ)ELBO =
1

S

S∑
s=1

∇(µ,σ)

[
log p(x, σε+ µ)− log q(µ,σ)(σε+ µ)

]
(4.64)

where εs ∼ N (0, 1).

This method, when applicable, is considered the best in terms of keeping a low
variance.

4.4.4 Mean-field and correction of the instability

Applying this framework to our model it is clear that we still have some problems
of high variance and instability while computing the stochastic gradient. This
affects inevitably the quality of the parameters’ optimization and consequently the
accuracy of the predictions. The flaw in the procedure is probably that, looking at
our variational approximation q more carefully, we are not really in the mean-field
family. Because of the Kalman smoother running through all the time t, expression
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(4.27), reported here:

q(s,µ) =
∏
t,i

q(sti; θti, η
2
ti) ·

∏
t,i

q(µti; µ̂:i), (4.65)

is not completely factorized in the term q(µti; µ̂:i). This can be a problem while
applying Rao-Blackwellization and the control variates technique explained above.

Mean-field approximation Even if the structure presented above, given the
generative model underlying SpringRank, is the natural formulation of the prob-
lem, we have issues due to high variance and instability. We can avoid this, in the
case of the binomial likelihood where the ELBO function is not directly computable,
applying some further modifications. First of all, to speed up the computations and
simplify the model, we remove completely here the Kalman filter and smoother.
Now we can define the variational approximation q using pure mean-field assuring
complete independence between variables in q

q(s) =
∏
ti

q(sti;mti, Vti) (4.66)

where as always the correlation of the scores with their past is still present when
optimizing the whole ELBO function. All the previous regularizing techniques are
now perfectly adapt and efficient in this new formulation.

4.4.5 Optimize the model parameters

We just saw how to optimize the variational parameters θ, η, µ̂, ν̂ by maximizing
the ELBO, nevertheless we still have some model parameters1 ρ, σ, β, c in the prior
(4.24)-(4.25) and in the likelihood (4.26) that we need to tune. For doing that we
use the variational EM procedure introduced in section 4.2. In fact, as explained
before, we can run a variational EM optimization loop, by alternating inference on
q and optimization of the hyperparameters. Actually, from exploratory results, the
best choice is to optimize only the likelihood related parameters β and c, keeping
the prior’s ones fixed.

1c parameter is present only in the Poisson-likelihood model (4.38)
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Algorithm 2 EM variational algorithm
1: Initialize randomly θ,η, µ̂, ν̂, ρ, σ, β, c
2: repeat
3: E-step:

θ∗,η∗, µ̂∗, ν̂∗ = argmax
θ,η,µ̂,ν̂

ELBO(θ,η, µ̂, ν̂, ρ, σ, β, c) (4.67)

4: M-step:

ρ∗, σ∗, β∗, c∗ = argmax
ρ,σ,β,c

ELBO(θ∗,η∗, µ̂∗, ν̂∗, ρ, σ, β, c) (4.68)

5: ρ, σ, β, c = ρ∗, σ∗, β∗, c∗

6: until convergence

4.5 Results

We present here some results for the models introduced above, using the same
NBA dataset described in the first part (see Table 4.1). As before, these results
are only partial and the models must be tested also against data taken from other
areas. Among the various models and small modifications mentioned above, we
report only the ones with the most interesting results:

model likel var par mod par acc agony σa σL
poiss compl poisson θ, η, µ̂, ν̂ ρ, σ, β, c 0.640 3.154 0.631 -1.328
poiss reduced poisson ŝ, ν̂ σ, β, c 0.632 3.118 0.632 -1.319
binom compl binom θ, η, µ̂, ν̂ ρ, σ, β 0.495 5.243 0.494 -1.694
binom MF binom m,V σ, β 0.649 2.998 0.647 -1.255

Table 4.1: Results for some of the above presented variational models: we
present in this table the results for some of the principal models introduced in Section
4.3; the columns contains the type of model, the form of the likelihood, the variational
parameters and model parameters chosen; the last for columns are the metrics used for
the comparison.

As expected, the model with binomial likelihood has very low performance due
to the problems of high variance and instability mentioned above. The correction
to the pure mean-field approximation works instead efficiently, proving that tech-
niques mentioned in Section 4.4.2 are useful when dealing with mean-field family.
This model is the best among the ones tried at the moment and quite competitive
also compared to Table 3.3.



5. Conclusions and Future Research

In this thesis we presented some extensions of static SpringRank model toward
a dynamic framework, where ranks vary through time. In the first part we have
adapted the static Hamiltonian of [1] to a time-varying setting, introducing an
external field acting on ranks consequent in time. In the second part we discussed
approximate inference, necessary when calculating the exact posterior is unfeasi-
ble. We developed a Bayesian model using some modern techniques for variational
inference and we finally tested the models against real NBA dataset. The perfor-
mances of our models are comparable with the principal state-of-art rating systems
according to various metric.

Much more work can be done testing and adapting these algorithms to other
contexts, from biology to social sciences. As shown before, while keeping fixed the
basic structure, better results are reached adjusting the form of the likelihood to
the specific application. We intend also to apply some of the newest techniques in
optimization to solve the problems of instability encountered while using stochastic
gradient descent in a non mean-field framework. Significant improvements to the
accuracy of the predictions can be reached introducing covariates inside the model.
Let’s think to data in sport again, the performance of a team when playing home
or away, for example, can be quite different and this factor must be considered in
order to predict the outcomes of the matches.
Moreover, it can be worth to explore some of the new frontiers of variational infer-
ence, different from the standard mean-field approximation. As mentioned above,
the choice of the variational family is one of the key aspect in this field and meth-
ods taken from statistical physics are actually being investigated. Recent works
show also the benefits of combining MCMC and variational inference, exploiting the
asymptotically exactness of the former and the rapidity of the latter [40].
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Appendices

A. Synthetic datasets analysis
β = 2.0

(a) (b) (c) (d)

β = 0.5

(e) (f) (g) (h)

β = 0.1

(i) (j) (k) (l)

Figure 1: Results obtained for synthetic data considering all the presented
metrics: the red and blue lines are respectively the value obtained with Self Spring
SpringRank (SSSR) algorithm and with moving window version of SpringRank (MWSR)
considering the time stamps (the chronological order) of the matches, each entry of the
histogram is instead a different realization of SSSR for a random permutation in the
order of the matches (no true time stamps). Each row correspond to a different level of
hierarchy, controlled by the parameter β, used to create the synthetic dataset.
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Synthetic static dataset, β = 2.0

(a) (b) (c) (d)

Figure 2: Results obtained for synthetic data in static framework: the red
and blue lines are respectively the value obtained with Self Spring SpringRank (SSSR)
algorithm and with moving window version of SpringRank (MWSR) considering the time
stamps (the chronological order) of the matches, each entry of the histogram is instead
a different realization of SSSR for a random permutation in the order of the matches
(random time-stamps assigned to the matches).
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B. ELBO: hints for calculations

We report also an useful observation that will be needed in the following calcula-
tions: consider the random variable stij := sti − stj − 1. Since for the variational
distribution q the variables sti are uncorrelated normals, the variable stij is so with

stij ∼ N(θti − θtj − 1, η2ti + η2tj) =: N(θtij, η
2
tij)

Moreover, q is factorized over the sti so that∫
(sti − stj − 1)2q(s)ds =

∫
(sti − stj − 1)2q(sti, stj)dstidstj

=

∫
s2tijq(stij)dstij

= V arq(stij) + Eq[stij]2

= η2ti + η2tj + (θti − θtj − 1)2. (1)

Similar results hold for the random variables sti − µti and µti − µt−1,i, since all
variables are independent for the variational distribution q.
We finally recall the expression of the moment generating function of a squared
Gaussian X ∼ N(µ, σ2), that is

E[etX
2

] =
1√

1− 2tσ2
exp

(
µ2t

1− 2tσ2

)
and in our specific case we obtain

Eq[e−
β
2
s2tij ] =

1√
1 + βη2tij

exp

(
−β

2
·

θ2tij
1 + βη2tij

)
. (2)

We use this results to compute the analytical expression of (4.34).
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