Header logo is
Institute Talks

Recognizing the Pain Expressions of Horses

Talk
  • 10 December 2018 • 14:00 15:00
  • Prof. Dr. Hedvig Kjellström
  • Aquarium (N3.022)

Recognition of pain in horses and other animals is important, because pain is a manifestation of disease and decreases animal welfare. Pain diagnostics for humans typically includes self-evaluation and location of the pain with the help of standardized forms, and labeling of the pain by an clinical expert using pain scales. However, animals cannot verbalize their pain as humans can, and the use of standardized pain scales is challenged by the fact that animals as horses and cattle, being prey animals, display subtle and less obvious pain behavior - it is simply beneficial for a prey animal to appear healthy, in order lower the interest from predators. We work together with veterinarians to develop methods for automatic video-based recognition of pain in horses. These methods are typically trained with video examples of behavioral traits labeled with pain level and pain characteristics. This automated, user independent system for recognition of pain behavior in horses will be the first of its kind in the world. A successful system might change the concept for how we monitor and care for our animals.


Robot Learning for Advanced Manufacturing – An Overview

Talk
  • 10 December 2018 • 11:00 12:00
  • Dr. Eugen Solowjow
  • MPI-IS Stuttgart, seminar room 2P4

A dominant trend in manufacturing is the move toward small production volumes and high product variability. It is thus anticipated that future manufacturing automation systems will be characterized by a high degree of autonomy, and must be able to learn new behaviors without explicit programming. Robot Learning, and more generic, Autonomous Manufacturing, is an exciting research field at the intersection of Machine Learning and Automation. The combination of "traditional" control techniques with data-driven algorithms holds the promise of allowing robots to learn new behaviors through experience. This talk introduces selected Siemens research projects in the area of Autonomous Manufacturing.

Organizers: Sebastian Trimpe Friedrich Solowjow


Physical Reasoning and Robot Manipulation

Talk
  • 11 December 2018 • 15:00 16:00
  • Marc Toussaint
  • 2R4 Werner Köster lecture hall

Animals and humans are excellent in conceiving of solutions to physical and geometric problems, for instance in using tools, coming up with creative constructions, or eventually inventing novel mechanisms and machines. Cognitive scientists coined the term intuitive physics in this context. It is a shame we do not yet have good computational models of such capabilities. A main stream of current robotics research focusses on training robots for narrow manipulation skills - often using massive data from physical simulators. Complementary to that we should also try to understand how basic principles underlying physics can directly be used to enable general purpose physical reasoning in robots, rather than sampling data from physical simulations. In this talk I will discuss an approach called Logic-Geometric Programming, which builds a bridge between control theory, AI planning and robot manipulation. It demonstrates strong performance on sequential manipulation problems, but also raises a number of highly interesting fundamental problems, including its probabilistic formulation, reactive execution and learning.

Organizers: Katherine Kuchenbecker Ildikó Papp-Wiedmann Barbara Kettemann Matthias Tröndle


Magnetically Guided Multiscale Robots and Soft-robotic Grippers

Talk
  • 11 December 2018 • 11:00 12:00
  • Dr. František Mach
  • Stuttgart 2P4

The state-of-the-art robotic systems adopting magnetically actuated ferromagnetic bodies or even whole miniature robots have recently become a fast advancing technological field, especially at the nano and microscale. The mesoscale and above all multiscale magnetically guided robotic systems appear to be the advanced field of study, where it is difficult to reflect different forces, precision and also energy demands. The major goal of our talk is to discuss the challenges in the field of magnetically guided mesoscale and multiscale actuation, followed by the results of our research in the field of magnetic positioning systems and the magnetic soft-robotic grippers.

Organizers: Metin Sitti


Learning Dynamics from Kinematics: Estimating Foot Pressure from Video

Talk
  • 12 December 2018 • 10:00 11:00
  • Yanxi Liu
  • Aquarium (N3.022)

Human pose stability analysis is the key to understanding locomotion and control of body equilibrium, with numerous applications in the fields of Kinesiology, Medicine and Robotics. We propose and validate a novel approach to learn dynamics from kinematics of a human body to aid stability analysis. More specifically, we propose an end-to-end deep learning architecture to regress foot pressure from a human pose derived from video. We have collected and utilized a set of long (5min +) choreographed Taiji (Tai Chi) sequences of multiple subjects with synchronized motion capture, foot pressure and video data. The derived human pose data and corresponding foot pressure maps are used jointly in training a convolutional neural network with residual architecture, named “PressNET”. Cross validation results show promising performance of PressNet, significantly outperforming the baseline method under reasonable sensor noise ranges.

Organizers: Nadine Rueegg


Self-Supervised Representation Learning for Visual Behavior Analysis and Synthesis

Talk
  • 14 December 2018 • 12:00 13:00
  • Prof. Dr. Björn Ommer
  • PS Aquarium

Understanding objects and their behavior from images and videos is a difficult inverse problem. It requires learning a metric in image space that reflects object relations in real world. This metric learning problem calls for large volumes of training data. While images and videos are easily available, labels are not, thus motivating self-supervised metric and representation learning. Furthermore, I will present a widely applicable strategy based on deep reinforcement learning to improve the surrogate tasks underlying self-supervision. Thereafter, the talk will cover the learning of disentangled representations that explicitly separate different object characteristics. Our approach is based on an analysis-by-synthesis paradigm and can generate novel object instances with flexible changes to individual characteristics such as their appearance and pose. It nicely addresses diverse applications in human and animal behavior analysis, a topic we have intensive collaboration on with neuroscientists. Time permitting, I will discuss the disentangling of representations from a wider perspective including novel strategies to image stylization and new strategies for regularization of the latent space of generator networks.

Organizers: Joel Janai


Generating Faces & Heads: Texture, Shape and Beyond.

Talk
  • 17 December 2018 • 11:00 12:00
  • Stefanos Zafeiriou
  • PS Aquarium

The past few years with the advent of Deep Convolutional Neural Networks (DCNNs), as well as the availability of visual data it was shown that it is possible to produce excellent results in very challenging tasks, such as visual object recognition, detection, tracking etc. Nevertheless, in certain tasks such as fine-grain object recognition (e.g., face recognition) it is very difficult to collect the amount of data that are needed. In this talk, I will show how, using DCNNs, we can generate highly realistic faces and heads and use them for training algorithms such as face and facial expression recognition. Next, I will reverse the problem and demonstrate how by having trained a very powerful face recognition network it can be used to perform very accurate 3D shape and texture reconstruction of faces from a single image. Finally, I will demonstrate how to create very lightweight networks for representing 3D face texture and shape structure by capitalising upon intrinsic mesh convolutions.

Organizers: Dimitris Tzionas


Mind Games

IS Colloquium
  • 21 December 2018 • 11:00 12:00
  • Peter Dayan
  • IS Lecture Hall

Much existing work in reinforcement learning involves environments that are either intentionally neutral, lacking a role for cooperation and competition, or intentionally simple, when agents need imagine nothing more than that they are playing versions of themselves. Richer game theoretic notions become important as these constraints are relaxed. For humans, this encompasses issues that concern utility, such as envy and guilt, and that concern inference, such as recursive modeling of other players, I will discuss studies treating a paradigmatic game of trust as an interactive partially-observable Markov decision process, and will illustrate the solution concepts with evidence from interactions between various groups of subjects, including those diagnosed with borderline and anti-social personality disorders.


TBA

IS Colloquium
  • 28 January 2019 • 11:15 12:15
  • Florian Marquardt

Organizers: Matthias Bauer

  • Prof. Holger Stark
  • Stuttgart 2P4

Active motion of biological and artificial microswimmers is relevant in the real world, in microfluidics, and biological applications but also poses fundamental questions in non-equi- librium statistical physics. Mechanisms of single microswimmers either designed by nature or in the lab need to be understood and a detailed modeling of microorganisms helps to explore their complex cell design and their behavior. It also motivates biomimetic approaches. The emergent collective motion of microswimmers generates appealing dynamic patterns as a consequence of the non-equilibrium.

Organizers: Metin Sitti Zoey Davidson


  • Umar Iqbal
  • PS Aquarium

In this talk, I will present an overview of my Ph.D. research towards articulated human pose estimation from unconstrained images and videos. In the first part of the talk, I will present an approach to jointly model multi-person pose estimation and tracking in a single formulation. The approach represents body joint detections in a video by a spatiotemporal graph and solves an integer linear program to partition the graph into sub-graphs that correspond to plausible body pose trajectories for each person. I will also introduce the PoseTrack dataset and benchmark which is now the de-facto standard for multi-person pose estimation and tracking. In the second half of the talk, I will present a new method for 3D pose estimation from a monocular image through a novel 2.5D pose representation. The new 2.5D representation can be reliably estimated from an RGB image. Furthermore, it allows to exactly reconstruct the absolute 3D body pose up to a scaling factor, which can be estimated additionally if a prior of the body size is given. I will also describe a novel CNN architecture to implicitly learn the heatmaps and depth-maps for human body key-points from a single RGB image.

Organizers: Dimitris Tzionas


  • Prof. Dr. Rahmi Oklu
  • 3P02

Minimally invasive approaches to vascular disease and cancer have revolutionized medicine. I will discuss novel approaches to vascular bleeding, aneurysm treatment and tumor ablation.

Organizers: Metin Sitti


  • Prof. Eric Tytell
  • MPI-IS Stuttgart, Werner-Köster lecture hall

Many fishes swim efficiently over long distances to find food or during migrations. They also have to accelerate rapidly to escape predators. These two behaviors require different body mechanics: for efficient swimming, fish should be very flexible, but for rapid acceleration, they should be stiffer. Here, I will discuss recent experiments that show that they can use their muscles to tune their effective body mechanics. Control strategies inspired by the muscle activity in fishes may help design better soft robotic devices.

Organizers: Ardian Jusufi


  • Prof. Dr. Stefan Roth
  • N0.002

Supervised learning with deep convolutional networks is the workhorse of the majority of computer vision research today. While much progress has been made already, exploiting deep architectures with standard components, enormous datasets, and massive computational power, I will argue that it pays to scrutinize some of the components of modern deep networks. I will begin with looking at the common pooling operation and show how we can replace standard pooling layers with a perceptually-motivated alternative, with consistent gains in accuracy. Next, I will show how we can leverage self-similarity, a well known concept from the study of natural images, to derive non-local layers for various vision tasks that boost the discriminative power. Finally, I will present a lightweight approach to obtaining predictive probabilities in deep networks, allowing to judge the reliability of the prediction.

Organizers: Michael Black


A fine-grained perspective onto object interactions

Talk
  • 30 October 2018 • 10:30 11:30
  • Dima Damen
  • N0.002

This talk aims to argue for a fine-grained perspective onto human-object interactions, from video sequences. I will present approaches for the understanding of ‘what’ objects one interacts with during daily activities, ‘when’ should we label the temporal boundaries of interactions, ‘which’ semantic labels one can use to describe such interactions and ‘who’ is better when contrasting people perform the same interaction. I will detail my group’s latest works on sub-topics related to: (1) assessing action ‘completion’ – when an interaction is attempted but not completed [BMVC 2018], (2) determining skill or expertise from video sequences [CVPR 2018] and (3) finding unequivocal semantic representations for object interactions [ongoing work]. I will also introduce EPIC-KITCHENS 2018, the recently released largest dataset of object interactions in people’s homes, recorded using wearable cameras. The dataset includes 11.5M frames fully annotated with objects and actions, based on unique annotations from the participants narrating their own videos, thus reflecting true intention. Three open challenges are now available on object detection, action recognition and action anticipation [http://epic-kitchens.github.io]

Organizers: Mohamed Hassan


Artificial haptic intelligence for human-machine systems

IS Colloquium
  • 25 October 2018 • 11:00 11:00
  • Veronica J. Santos
  • N2.025 at MPI-IS in Tübingen

The functionality of artificial manipulators could be enhanced by artificial “haptic intelligence” that enables the identification of object features via touch for semi-autonomous decision-making and/or display to a human operator. This could be especially useful when complementary sensory modalities, such as vision, are unavailable. I will highlight past and present work to enhance the functionality of artificial hands in human-machine systems. I will describe efforts to develop multimodal tactile sensor skins, and to teach robots how to haptically perceive salient geometric features such as edges and fingertip-sized bumps and pits using machine learning techniques. I will describe the use of reinforcement learning to teach robots goal-based policies for a functional contour-following task: the closure of a ziplock bag. Our Contextual Multi-Armed Bandits approach tightly couples robot actions to the tactile and proprioceptive consequences of the actions, and selects future actions based on prior experiences, the current context, and a functional task goal. Finally, I will describe current efforts to develop real-time capabilities for the perception of tactile directionality, and to develop models for haptically locating objects buried in granular media. Real-time haptic perception and decision-making capabilities could be used to advance semi-autonomous robot systems and reduce the cognitive burden on human teleoperators of devices ranging from wheelchair-mounted robots to explosive ordnance disposal robots.

Organizers: Katherine Kuchenbecker Adam Spiers


Artificial haptic intelligence for human-machine systems

IS Colloquium
  • 24 October 2018 • 11:00 12:00
  • Veronica J. Santos
  • 5H7 at MPI-IS in Stuttgart

The functionality of artificial manipulators could be enhanced by artificial “haptic intelligence” that enables the identification of object features via touch for semi-autonomous decision-making and/or display to a human operator. This could be especially useful when complementary sensory modalities, such as vision, are unavailable. I will highlight past and present work to enhance the functionality of artificial hands in human-machine systems. I will describe efforts to develop multimodal tactile sensor skins, and to teach robots how to haptically perceive salient geometric features such as edges and fingertip-sized bumps and pits using machine learning techniques. I will describe the use of reinforcement learning to teach robots goal-based policies for a functional contour-following task: the closure of a ziplock bag. Our Contextual Multi-Armed Bandits approach tightly couples robot actions to the tactile and proprioceptive consequences of the actions, and selects future actions based on prior experiences, the current context, and a functional task goal. Finally, I will describe current efforts to develop real-time capabilities for the perception of tactile directionality, and to develop models for haptically locating objects buried in granular media. Real-time haptic perception and decision-making capabilities could be used to advance semi-autonomous robot systems and reduce the cognitive burden on human teleoperators of devices ranging from wheelchair-mounted robots to explosive ordnance disposal robots.

Organizers: Katherine Kuchenbecker


Learning to Act with Confidence

Talk
  • 23 October 2018 • 12:00 13:00
  • Andreas Krause
  • MPI-IS Tübingen, N0.002

Actively acquiring decision-relevant information is a key capability of intelligent systems, and plays a central role in the scientific process. In this talk I will present research from my group on this topic at the intersection of statistical learning, optimization and decision making. In particular, I will discuss how statistical confidence bounds can guide data acquisition in a principled way to make effective and reliable decisions in a variety of complex domains. I will also discuss several applications, ranging from autonomously guiding wetlab experiments in protein function optimization to safe exploration in robotics.


Control Systems for a Surgical Robot on the Space Station

IS Colloquium
  • 23 October 2018 • 16:30 17:30
  • Chris Macnab
  • MPI-IS Stuttgart, Heisenbergstr. 3, Room 2P4

As part of a proposed design for a surgical robot on the space station, my research group has been asked to look at controls that can provide literally surgical precision. Due to excessive time delay, we envision a system with a local model being controlled by a surgeon while the remote system on the space station follows along in a safe manner. Two of the major design considerations that come into play for the low-level feedback loops on the remote side are 1) the harmonic drives in a robot will cause excessive vibrations in a micro-gravity environment unless active damping strategies are employed and 2) when interacting with a human tissue environment the robot must apply smooth control signals that result in precise positions and forces. Thus, we envision intelligent strategies that utilize nonlinear, adaptive, neural-network, and/or fuzzy control theory as the most suitable. However, space agencies, or their engineering sub-contractors, typically provide gain and phase margin characteristics as requirements to the engineers involved in a control system design, which are normally associated with PID or other traditional linear control schemes. We are currently endeavouring to create intelligent controls that have guaranteed gain and phase margins using the Cerebellar Model Articulation Controller.

Organizers: Katherine Kuchenbecker